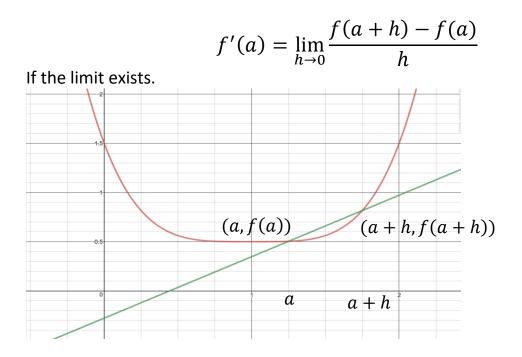
Partial Derivatives

Recall for a function of 1 variable that the definition of a derivative was:

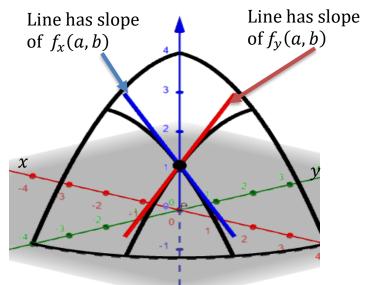


There are only 2 directions to approach a by, from the right or from the left. For a function of 2 variables there are an infinite number of directions we can approach a point (a, b).

However, there are 2 special sets of directions we can look at:

1. Let y = b and let x approach a2. Let x = a and let y approach b.

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$
$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$



These are called partial derivatives of f with respect to x and y at (a, b).

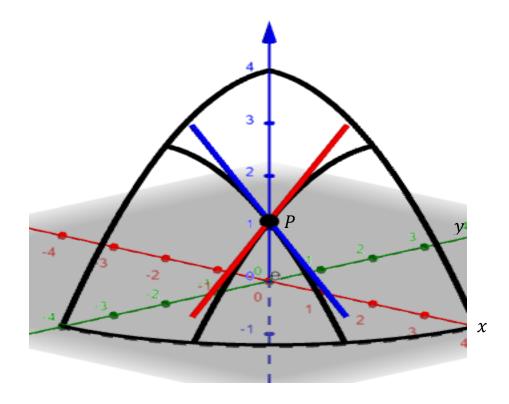
Def. If f is a function of 2 variables, then the **partial derivatives**, f_x and f_y , are:

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$$
$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

if the limits exist.

Just like f'(x) gives you the rate of change of the value of a function y = f(x), $f_x(x, y)$ gives the rate of change of the value of f(x, y) in the x direction (holding y constant) and $f_y(x, y)$ gives the rate of change of the value of f(x, y) in the y direction (holding x constant). So if $f_x(1, -2) > 0 \Rightarrow$ if you increase x a little from x = 1, y = -2, then the value of z increases.

Ex. In the example below, if you are at P(a, b, f(a, b)), and you increase x and hold y constant, then the value of f(x, b) decreases. If you increase y and hold x constant, then the value of f(a, y) increases.



Notation: If z = f(x, y), then we write:

$$f_x = D_1 f = f_1 = \frac{\partial f}{\partial x} = \frac{\partial z}{\partial x} = \frac{\partial f(x, y)}{\partial x} = D_x f$$
$$f_y = D_2 f = f_2 = \frac{\partial f}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial f(x, y)}{\partial y} = D_y f.$$

A partial derivative is an ordinary derivative of a single variable where we treat the second variable as a constant.

Ex. Let $f(x, y) = x^2 + 2x^3y^2 - x \sin y$. Find $f_x(2,0)$ and $f_y(2,0)$.

$$f_x(x, y) = 2x + 6x^2y^2 - \sin y$$

$$f_y(x, y) = 0 + 4x^3y - x\cos y$$

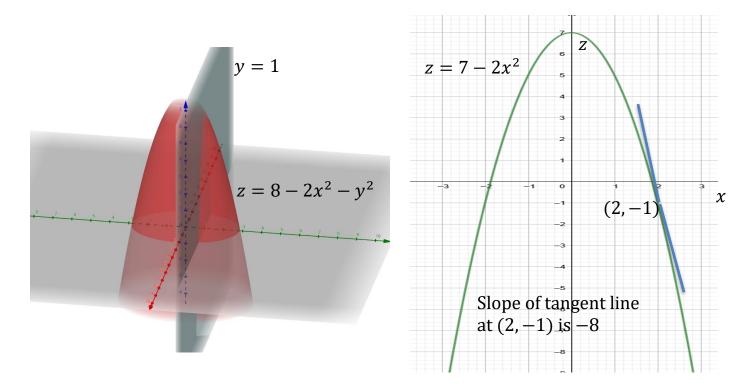
$$f_x(2,0) = 2(2) + 2(2)^2(0)^2 - \sin 0 = 4$$

$$f_y(2,0) = 4(2)^3(0) - 2(\cos 0) = -2.$$

Ex. Let $f(x, y) = 8 - 2x^2 - y^2$. Find $f_x(2, 1)$ and $f_y(2, 1)$ and then interpret these numbers as slopes.

$$f_x(x,y) = -4x$$
 $f_y(x,y) = -2y$
 $f_x(2,1) = -8$ $f_y(2,1) = -2$

If we slice the paraboloid by the plane y = 1, then the intersection is the curve, $z = 8 - 2x^2 - (1)^2 = 7 - 2x^2$. For a parabola in the (x, 1, z) plane $z = 7 - 2x^2$, the slope of the tangent line to that parabola at (2,1,-1) is $f_x(2,1) = -8$ (i.e. f(x,y) is decreasing in the x direction at (2,1,-1)).



If we slice the paraboloid by the plane x = 2, then we get a parabola: $z = 8 - (2)(2)^2 - y^2 = -y^2$ at (2, 1, -1). The slope of the tangent line to $z = -y^2$, at (2, 1, -1) is -2 (i.e. f(x, y) is decreasing in the y direction at (2, 1, -1).)

Ex. Chain rule: $f(x, y) = e^{xy} + (x^2 + y^2)^{10}$. Find f_x and f_y .

$$f_{x} = e^{xy} \frac{\partial}{\partial x} (xy) + 10(x^{2} + y^{2})^{9} \frac{\partial}{\partial x} (x^{2} + y^{2})$$

$$f_{x} = ye^{xy} + 10(x^{2} + y^{2})^{9} (2x)$$

$$f_{x} = ye^{xy} + 20x(x^{2} + y^{2})^{9}.$$

$$f_{y} = e^{xy} \frac{\partial}{\partial y} (xy) + 10(x^{2} + y^{2})^{9} \frac{\partial}{\partial y} (x^{2} + y^{2})$$

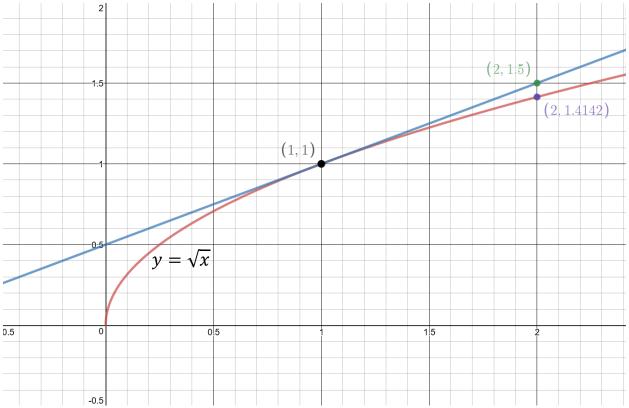
$$f_{y} = xe^{xy} + 10(x^{2} + y^{2})^{9} (2y)$$

$$f_{y} = xe^{xy} + 20y(x^{2} + y^{2})^{9}.$$

Tangent Planes

For functions of 1 variable, we found the equation of a tangent line to a curve. In particular, we could use the tangent line to approximate the value of a function.

Ex. Use the tangent line to the graph of $y = \sqrt{x}$ at the point (1,1) to approximate $\sqrt{2}$.



To do this we need to find the equation of the tangent line at (1,1) and then find the *y* value along the tangent line when x = 2.

is

$$f(x) = x^{\frac{1}{2}}$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

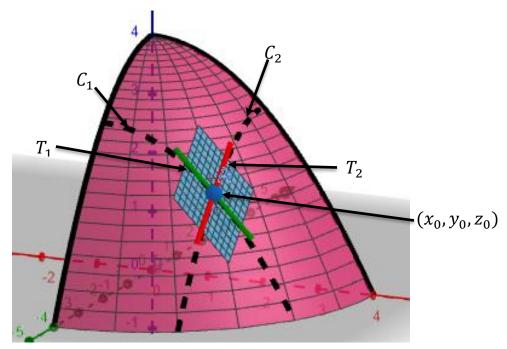
Slope of tangent line at $x = 1$

$$f'(1) = \frac{1}{2\sqrt{1}} = \frac{1}{2}.$$

Equation of tangent line at x = 1:

$$y - 1 = \frac{1}{2}(x - 1)$$
 or $y = \frac{1}{2}(x - 1) + 1$
 $L(x) = \frac{1}{2}(x - 1) + 1$ is the **linear approximation of** $f(x) = x^{\frac{1}{2}}$ at $x = 1$.
So we can approximate $\sqrt{2}$ by:
 $\sqrt{2} \approx L(2) = \frac{1}{2}(2 - 1) + 1 = \frac{1}{2}(1) + 1 = 1.5$.

For functions of 2 variables, the graphs are surfaces instead of curves and we have tangent planes instead of tangent lines. For z = f(x, y), let (x_0, y_0, z_0) be on the surface. If we cut the surface with the plane $x = x_0$, then we can get a curve, C_1 , and a tangent line, T_1 (in green). If we cut the surface with the plane $y = y_0$, then we get a curve, C_2 , with a tangent line, T_2 (in red). The tangent plane is the plane that contains those 2 lines (in blue).



Actually, if C is any curve that lies on the surface through (x_0, y_0, z_0) , then its tangent line will also be in that plane.

We know the equation of any plane through (x_0, y_0, z_0) is:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

or
$$z - z_0 = -\frac{A}{c}(x - x_0) - \frac{B}{c}(y - y_0)$$

or
$$z - z_0 = a(x - x_0) + b(y - y_0)$$

$$z - z_0 = a(x - x_0) + b(y - y_0)$$

where $a = -\frac{A}{c}$, $b = -\frac{B}{c}$.

If we intersect this plane with the plane $y = y_0$, then we get:

$$z - z_0 = a(x - x_0);$$
 $y = y_0$

These two equations give us a line (the intersection of 2 planes) with a slope a. We know the slope of the tangent line, T_1 , is $f_x(x_0, y_0)$. Therefore, if we start with the tangent plane with the equation:

$$z - z_0 = a(x - x_0) + b(y - y_0)$$

then
$$a = f_x(x_0, y_0)$$
 .

Similarly, if we intersect the tangent plane with the plane $x = x_0$, we get the line:

$$z - z_0 = b(y - y_0); \quad x = x_0.$$

The slope of this line is b, which equals $f_y(x_0, y_0)$. Thus we have:

$$b = f_y(x_0, y_0).$$

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at $P(x_0, y_0, z_0)$ is:

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Ex. Find the equation of the tangent plane to the elliptic paraboloid $z = x^2 + 2y^2 + 1$ at the point (1, -1, 4).

$$(x_0, y_0, z_0) = (1, -1, 4)$$

$$f_x = 2x \qquad f_y = 4y$$

$$f_x(1, -1) = 2 \qquad f_y(1, -1) = -4$$

Equation of tangent plane at (1, -1, 4):

.

$$z - 4 = 2(x - 1) - 4(y + 1)$$

$$z - 4 = 2x - 2 - 4y - 4$$

$$z = 2x - 4y - 2$$

$$z = x^{2} + 2y^{2} + 1$$

$$(1, -1, 4)$$

$$y$$

$$z = 2x - 4y - 2$$

$$x$$

-2

-6

Just as we used the tangent line to approximate the values of a curve near a point, we can use the tangent plane to approximate the values of a function of 2 variables. The equation of a plane is simple, but evaluating a complicated function can be hard.

In the last example we had the surface $z = x^2 + 2y^2 + 1$ (elliptic paraboloid) whose tangent plane at (1, -1, 4) was z = 2x - 4y - 2.

L(x, y) = 2x - 4y - 2 is called the **linearization of** f at (1, -1). So $L(x, y) \approx f(x, y)$ when (x, y) is "not too far" from (1, -1).

Ex. Approximate the value of $(1.05)^2 + 2(-1.1)^2 + 1$.

Let $z = f(x, y) = x^2 + 2y^2 + 1$. We want to approximate f(1.05, -1.1). We can do this 2 different ways.

Approach 1: Using the formula:

$$z = f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b).$$

In this case, x = 1.05, y = -1.1, a = 1, b = -1.

We know from the previous example that: $f_x(1,-1) = 2$ $f_y(1,-1) = -4$, so $f(1.05,-1.1) \approx f(1,-1) + 2(1.05-1) - 4(-1.1-(-1)).$ = 4 + 2(.05) - 4(-.1) = 4.5. Approach 2: Find the *z* value of the point (1.05, -1.1) on the tangent plane to z = f(x, y) at (1, -1).

In the previous example we found the equation of this tangent plane to be: L(x, y) = 2x - 4y - 2.

$$f(1.05, -1.1) \approx L(1.05, -1.1) = 2(1.05) - 4(-1.1) - 2$$

= 4.5.

Notice that the equation of the tangent plane is:

$$f(x,y) \approx L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Using the tangent plane in this form is exactly approach #1.

Notice we can define partial derivatives for functions of 3 (or more) variables: w = f(x, y, z)

$$\frac{\partial f}{\partial z} = \lim_{h \to 0} \frac{f(x, y, z + h) - f(x, y, z)}{h}$$

Ex. Let $f(x, y, z) = e^{xy} \sin(y^2 z)$. Find f_x, f_y , and f_z .

$$f_x = ye^{xy} \sin(y^2 z)$$

$$f_y = e^{xy} ((\cos(y^2 z)) 2yz) + (\sin(y^2 z))(xe^{xy})$$

$$f_z = e^{xy} (\cos(y^2 z)) y^2.$$

A linear approximation can be defined for more than 2 variables. If we have w = f(x, y, z), then we write:

$$f(x, y, z) \approx L(x, y, z)$$

= $f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c)$

Ex. Find the linear approximation, L(x, y, z), of the function V = xyz at the point (1, 2, 4), and approximate the value of (0.95)(2.01)(4.1) = V(0.95, 2.01, 4.1).

$V_x = yz$	$V_x = (1, 2, 4) = 8$
$V_y = xz$	$V_y = (1, 2, 4) = 4$
$V_z = xy$	$V_z = (1, 2, 4) = 2$

$$V(x, y, z) \approx L(x, y, z)$$

= $V(1, 2, 4) + V_x(1, 2, 4)(x - 1) + V_y(1, 2, 4)(y - 2) + V_z(1, 2, 4)(z - 4).$
= $8 + 8(x - 1) + 4(y - 2) + 2(z - 4).$
 $V(0.95, 2.01, 4.1) \approx 8 + 8(0.95 - 1) + 4(2.01 - 2) + 2(4.1 - 4)$
= 7.84.

Or we could have combined terms in L(x, y, z) and then plugged in.

$$L(x, y, z) = 8 + 8(x - 1) + 4(y - 2) + 2(z - 4)$$

= 8x + 4y + 2z - 16.

$$V(0.95, 2.01, 4.1) \approx L(0.95, 2.01, 4.1)$$

= 8(0.95) + 4(2.01) + 2(4.1) = 7.84.

Differentiability: The General Case

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ then we define the derivative, $Df(\overrightarrow{x_0})$, to be:

$$Df(\vec{x}_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

where
$$f(\overrightarrow{x_0}) = \langle f_1(\overrightarrow{x_0}), \dots, f_m(\overrightarrow{x_0}) \rangle$$
.

Ex. Let $f(x, y) = (e^{x+y} + y, y^2x)$, find the following:

a. *Df*(*x*, *y*) b. *Df*(0, 1)

a.
$$Df(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} e^{x+y} & e^{x+y}+1 \\ y^2 & 2xy \end{bmatrix}$$

b. $Df(0,1) = \begin{bmatrix} e & e+1 \\ 1 & 0 \end{bmatrix}$.

Def: Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$, then **the gradient of** f, ∇f , is

$$\nabla f = <\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}>.$$

In particular, If $f: \mathbb{R}^3 \to \mathbb{R}$, then:

$$\nabla f = <\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} > =\frac{\partial f}{\partial x}\vec{\iota} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$$

Ex. Suppose $f(x, y, z) = xe^{y} + z$, find $\nabla f(1, 0, 1)$.

$$\nabla f(x, y, z) = <\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} > = = (e^{y})\vec{\iota} + (xe^{y})\vec{j} + \vec{k}$$

$$\nabla f(1,0,1) = \langle e^0, 1e^0, 1 \rangle = \langle 1,1,1 \rangle = \vec{\iota} + \vec{j} + \vec{k}.$$

Ex. Suppose $f(x, y) = e^{xy} + \cos(xy)$; find $\nabla f(x, y)$ and $\nabla f(0, 1)$.

$$\nabla f(x,y) = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \rangle = \langle ye^{xy} - y\sin(xy), xe^{xy} - x\sin(xy) \rangle$$
$$= (ye^{xy} - y\sin(xy))\vec{i} + (xe^{xy} - x\sin(xy))\vec{j}.$$
$$\nabla f(0,1) = (1(1) - 1(0))\vec{i} + (0(e^0) - 0(0))\vec{j} = \vec{i}.$$

13