Linear Transformations

Def. Let V and W be vector spaces. We call a function T:V — W a linear
transformation fromV to W ifforallu,v € Vandc € R

a. T(wu+v)=Tw)+TW)
b. T(cv) = cT(v).

Theorem: Let T:V — W be a linear transformation from a vector space V to a
vector space W. Then foru,v,uy, ...u, €V, a,b,ay,...,a, €ER

1. T(0)=0

2. Tw—u)=Tw)—T(u)

3. T(au+ bv) = aT(u) + bT (v)
4

. TR au) = X a;T(w;)

Proof:
1. T(0) =T(2(0)) = 2T(0) = T(0)=0.
2. Tlv—u) = T(v + (—u)) =Tw) +T(—u)
=T() — T(w).

3. T(au + bv) = T(au) + T(bv) = aT(u) + bT (v).
4. TR auy) = T(auy + auy + - ayvy)

= T(auy) + T(azu, + - + auy)

= a;T(uy) + T(ayu,) + T(azus + -+ auy)

=a,;T(uy) + a,T(u,) + -+ a,T(u,)
= Di=1 & T (W)



Ex. Show that T:V — W is a linear transformation if and only if
T(cv+u) =cT(w) +T(u) forallu,v €V, c € R

Proof: Case #3 of the previous theorem shows if T is linear then

T(cv+u) =cT(w) +T(u)forallu,v €V, c €R.

Now let’s show thatif T(cv + u) = cT(v) + T(u) forallu,v €V, c€R
then T islinear.
We must show:

1. Tu+v)=Tw)+Tw)forallu,v €V

2. T(cv) = cT(v) forall ¢ € R.

1. SinceT(cv +u) = cT(v) + T(u) forallu,v €V, ¢ € R, it’strue
forc = 1.

ThusT(v +u) =T(w) + T(u) forallu,v € V.

2. Ifwetakeu = 0thenT(cv + 0) = cT(v) + T(0)
= T(cv) = cT(v) + 0 = cT(v).



Ex. Show that T:R? - R? by T(< ay,a, >) =< a; + 2a,,a; >isa linear
transformation.

By the previous example we just need to show that T(cv + u) = cT(v) + T (u)
forallu,v € R? c € R.

Foranyu,v € R?, we have u =< X, YV1 >, v=<2Xy,Y,>and
T(c<x,y1>+<x5,7,>) =T(< cxy + x5, €Y1 + Y5 >)

=< cx; +x, + 2(cy; +y,), cx; + x, >.

CT(<x1, V1 >) +T(K x3,¥, >) = c(K x1 + 2y1, %1 >) + (< x5 + 2y, x5 >)
=< ¢cxq + 2¢cy; + x5 + 2y,, €X1 + X3 >
=< cx; + x5+ 2(cy; + y2), ¢x; +x, >
=T(c <x,y1 > +< x5, 7, >).

SoT(cu+v) =cT(u)+Tw)forallu,v € R?, ¢ € RandT is linear.



Ex. Define T: R? » R?2 by T(< aq,a, >) =< —ay,a, >. T is a reflection about
the y-axis. Show that T is a linear transformation.

Foranyu,v € R?, we have u =< X, YV1 >, vV=<2Xy,Y,>and
T(c <x,y1>+< x5y, >) =T(< cxy + x,, €y, + 7y, >)
=< _(Cxl + xZ), (%1 + Vo >,

cT(<x1,y1 >) +T(< x5, 2 >) = (< —xq,¥15)+< —x3, 5, >
=< —CX1 — X3, Y1 T+ Y, >
=< —(cxy +x3), cy; +y, >
=T(c <xy.,y1 > +< x5, 75 >)

So T is linear.

Ex. ShowthatT:R? - R?byT(< a,b >) =< a + 3,b >isnota linear
transformation.

Notice that if ¢ # 1 then T (cv) # c¢T (v):
T(c<ab>)=T(ca,ch>)=<ca+3,cb>

cT(a,b) = c(a+ 3,b) = (c(a +3),cb) # (ca + 3,ch).

It's also true that T(< 0,0 >) #< 0,0 >and T(u + v) # T(u) + T(v) in
general.



Ex. ShowthatT: R? - R?2 by T(< a,b >) =< a,0 > (called a projection) is a
linear transformation.

If we letu =< ay,b; >, v =<a, b, >andc € Rthen we have:
T(cu+v)=T(c<ayb, >+<a, b, >)
= T(< caq + a,, b1 + b2 >)

=<ca; +a, 0>

cT(uw) + T(v) = cT(< aq, by >) +T(< ay, b, >)
=c<ay,0>+<a,, 0>

=<caq +a, 0>

ThusT(cu +v) = ¢cT(u) + T(v) forallu,v € R?, c € R, so T is linear.

Ex. Show that T: B,(R) = B,(R) by T(f(x)) = f'(x) is a linear transformation.

Let f(x), g(x) € P,(R) andc € R.
T(cf () + g(0) = (ef () + g’
=cf'(x)+9'(x)
= cT(f(x)) + T(g(x).

So T is a linear transformation.



Ex. LetV = Cla, b], the vector space of continuous real valued function on
[a, b]. DefineT:V — R by T(f(x)) = f: f(x)dx. Show that T is a linear

transformation.

Let f(x), g(x) € C[a,b] and ¢ € R then

T(cf () + g() = [ (cf () + g(x))dx
c [ FO)dx + [T g(x)dx
= cT(f(x)) + T(g(x).

So T is a linear transformation.

Ex. Show that T:R? - R? by T(< ay,a, >) =< a,a,,a, > isnota linear
transformation.

letv =< aq,a, >andc € R, ¢ # 1then
T(cv) =T(c < aq,a, >)
=T(< cayq, ca, >)

=< c%aya,, ca, >

cT(< ay,a, >) =c<a,a,a, >

=< ca,a,,ca, ># T(cv).

Thus T is not a linear transformation.

In this case it also happens to be true that T(u + v) # T(u) + T(v) in general.



Ex: Suppose T: R? — R3 is a linear transformation such that
T(<23>)=<0,34>andT(<3,2>)=<-1,2,3>. FindT(< 2,8 >).

Notice that we can write < 2,8 > as a linear combination of < 2,3 > and < 3,2 >.
a<2,3>+b<3,2>=<28>
<2a+3b,3a+2b>=<28>

= 2a+3b=2
3a+ 2b = 8.
Solving these simultaneous equations we geta = 4,b = —2.

Thuswe have: 4<2,3>-2<3,2>=<2,8>.

Hence we have:
T(<28>)=T(4<2,3>-2<3,2>)
=4T(< 2,3 >) —2T(< 3,2 >)
=4<034>-2<-123>
=< 0,12,16 > —< —-2,4,6 >
=< 2,8,10 >.

In fact, given any < x,y >€ R? we can find T(< x,y >) by writing < x,y > as a
linear combination of < 2,3 > and < 3,2 >. In this case we would need to solve:

a<2,3>+b<32>=<xy>
= 2a+3b=x
3a+2b=y

for a and b in terms of x and y.



Two important linear transformations are:
1. The identity linear trasformation I: V — V, where [(v) = v forallv € V.

2. The zero linear transformation Ty:V — V, where Ty(v) = O forallv € V.

Def. Let V and W be vector spaces, and let T: V' = W be linear. The null space or
kernel of T, N(T), is the set of v € V such that T(v) = 0. The range or image of T
is the subset of W given by R(T) = {T(v)| v € V}.

Ex. LetI:V = V and Ty: V — W be the identity and zero transformations. Then
N(1) = {0} N(Ty) =V
R(D)=V R(T,) = {0}.

Ex. Let T: R3 — R? be the linear transformation given by

T(< a, a,,ds >) =< aq + a2,3a3 >. Find N(T) and R(T)

To find N(T) we need to find all vectors < a4, a,, a; > such that
T(<ay,a,a; >) =<a, +a,,3a; >=<0,0 >.
a,+ta,=0 = a =-—a,
3a; =0 = a;=0

So N(T) ={< a,—a,0 > R3| a € R}.



R(T) ={T(< a;,a,,a; >) =< a; + a,,3a; >€ R?| a,,a,,a; € R}.

Let < x,y > be any vector in R?. Let’s show that < x,y >€ R(T).
<ag+ay3a; >=<x,y >.
So a; +a, =x
3asz = y.

. : y
In particularifa; = x, a, =0, az = 3 then

T(< X, 0,% >) =<x,y> = R(T)=RZ
Theorem: Let V and W be vector spaces and T:V — W be linear. Then N(T) is a
subspace of V and R(T) is a subspace of W.
Proof: First we show that N(T') is a subspace of V.

Suppose that v,w € N(T) and ¢ € R then

Tw+w)=T@W)+TW)=0+0=0 = v+weN(T).

T(cv) =cT(w) =c(0)=0 = cv € N(T).

So N(T) is a subspace of V.
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Now we show that R(T) is a subspace of W.

Suppose that wy,w, € R(T) and c € R then there exist v;, v, € V such that
T(vy) =w; and T(vy) = wy.
Thus we have:
Ty +v,)=TwWwy) +Twy) =w; +w, = w; +w, € R(T).
T(cvy) = cT(vy) = cwy = cw; € R(T).

So R(T) is a subspace of W.

Theorem: Let V and W be vector spacesand T:V — W be linear. If
B = {v4, ..., v, } is a basis for V then

R(T) = span(T(B)) = span{T (vy), ..., T(v,)}.

Proof: T(v;) € R(T) for each i.
R(T) is a subspace of W = R(T) contains span{T (v,), ..., T(v,)}.

Now suppose w € R(T) thenw = T (v) forsomev € V.
Since {vy, ..., v, }isabasisforV, v =" a;v; forsomeay,..a, € R,
Since T is linear we have:
w=T(v) =Tz, aivy) = Xiz ;T (vy) € span(T (B)).
So R(T) is contained in the span{T (v,), ..., T(v,)}.

Since R(T) 2 span{T (v,), ..., T(v,))}and R(T) € span{T (v,), ..., T(v,)},
= R(T) = span(T(B)) = span{T (v,), ..., T(v,)}.
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Ex. Define the linear transformation T: P, (R) = M,,,(R) by

3)—f1 0

Find a basis for R(T) and dimR(T).
Since B = {1, x, x%} is a basis for P,(R)

R(T) = span{T (1), T (x), T(x*)}

=svanlly 3] [5 ol o ol

= Span{[g g], [?) g]}

Since [8 (1)] , [g 8] are linearly independent (one is not a nonzero multiple of
the other) they form a basis for R(T). Hence dimR(T) = 2.

Def. Let V and W be vector spacesand T:V — W be linear. If N(T) and R(T) are

finite dimensional, then we define the nullity of , Nullity(T) = dimN(T), and the
rank of T, Rank(T) = dimR(T).
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Theorem (dimension theorem): Let V and W be vector spacesand T:V — W be
linear. If VV is a finite dimensional vector space then

Nullity(T) + Rank(T) = dim(V).

Proof: Suppose that dim(V) = n,
dimN (T) = k and {vy, ... v} } is a basis for N(T).

Extend {v,, ... v} to a basis {vy, ... v, } of V.

Claim: S = {T(Vy41), ..., T(v,)} is a basis for R(T).

SinceT(v,) = T(v,) =+ = T(v,) = 0, we know from the previous
theorem that S generates R(T) since
R(T) = span{T (v,), ..., T(v,)} = span{T (vy4+1), ..., T(v,) }.

Now let’s show that S is linearly independent. Suppose
bis1T(Wis1) + -+ by T(v,) = 0.
Since T is linear: T(bxy1(Wgy1) + -+ by(vy)) = 0.
S0 by41(Vks1) + -+ by (vy,) € N(T).

Since {v4, ... Uy } is a basis for N(T) there exist ¢y, ..., cx € R such that
c1Vy + o+ kU = by (Wgi1) + - + by (vy)

C1V1 + -+ Uk — bg1 (Vgs1) — =+ — by (vy) = 0.

But {v, ... v, } are linearly independent so by, ..., b, = 0.
Hence S is linearly independent and a basis for R(T).

Thus Rank(T) = n — k and Nullity(T) + Rank(T) = dim(V).
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Ex. LetT: ]R3 - RZ by T(< a;,a,,as >) =< aq + a,,ds >. Find the
dim(R(T)).

We found earlier that
N(T)={<a,—-a,0>laeR}={a<1,-1,0>]| a € R}.
So N(T) has a basis of < 1,—1,0 > and dim(N(T)) = 1.

By the previous theorem we know that dim(R(T)) = 2 since dim(R?) = 3.
dim(N(T)) + dim(R(T)) = dim(R?)
1+ dim(R(T)) =3
= dim(R(T)) = 2.

Def. Let V and W be vector spacesand T:V — W be linear. T is called
one-to-one if T(v;) = T (v,) implies v; = v,. T is called onto if given

any w € W there exists at least one v € V such that T(v) = w.

Theorem: Let V and W be vector spacesand T:V — W be linear. Then T is one-to-
oneifandonly if N(T) = {0}.

Proof: Suppose T is one-to-one and v € N(T).
ThenT(v) = 0 = T(0).

But T is one-to-oneso v = 0.

Now suppose that N(T) = {0}and T (x) = T(y).
Then 0=T(x) —T(y) =T(x —vy), so x —y € N(T).

Thusx —y = 0and x = y. Thus T is one-to-one.



Theorem: Let V and W be vector spaces of equal (finite) dimension, and let
T:V — W be linear. Then the following are equivalent:

a. T is one-to-one
b. T is onto

c. Rank(T) = dim(V).

Proof: Recall that Nullity(T) + Rank(T) = dim(V).
T is one-to-one & N(T) = {0}.
N(T) = {0} & Nullity(T) = 0.
Nullity(T) =0 < Rank(T) = dim(V).
Rank(T) = dim(V) < Rank(T) = dim(W).
Rank(T) = dim(W) < R(T) =W, i.e. T is onto.

Note: The previous theorem does not hold if V and W are infinite dimensional.

For example, letV =W = P(R) and T: P(R) = P(R) by

1. T(f(0) = [ f)adt.
T is one-to-one because T(f(x)) = T(g(x)) means
Jy f(®©)dt = [ g(t)dt forallx.
= [X(f® - g®)dt =0 forallx.
= f(x) =g(x).

However, T is not onto as T (f(x)) #constant function.
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2. T(f() = f'(x).

T is not one-to-one because T(f (x)) = T(g(x)) means

f'(x) =g'(x) = f(x)=g(x)+ C forany constant C.

However, T is onto because given any g(x) = ag + a;x + - + a,x™ € P(R)

then f(x) = [ g(x)dx = agx + %alxz + 4 %"x"*l + C hasthe
property that T(f(x)) = g(x).

Ex. Let T: P,(R) = P,(R) by T(f(x)) = xf'(x). Show that T is a linear

transformation. Determine if T is one-to-one and/or onto.

To show that T is a linear transformation, let f(x), g(x) € P,(R) and ¢ € R.
Then we have:

T(cf(x) + g(x)) = x[cf(x) + g(x)]’
= x[cf"(x) + g'(x)]
=cxf'(x) + xg'(x)
= cT(f(x)) + T(g(x)).

Thus T is linear.

T is one-to-one & N(T) = {0}.
T(f(x)) =0
xf'(x) =0
= x=0or f'(x) =0.
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But f'(x) =0 = f(x) = constant.

Thus all constant functions f(x) € N(T).

Hence N(T) # {0} and T is not one-to-one.

In fact N(T) is spanned by f(x) = 1 hence
dim(N(T)) = 1.

Since Nullity(T) + Rank(T) = dim(P,(R)) = 3
Rank(T) = 2 so R(T) # P,(R) and T is not onto.

R(T) is spanned by T'(1), T (x), T(x?) because {1, x, x?}is a basis for P,(R).
R(T) = span{T(1),T (x), T(x?)}.

T(1)=x(0)=0 sinceif f(x) =1, f'(x) =0.

T(x)=x(1)=x sinceif f(x) =x, f'(x) =1.

T(x?) = x(2x) = 2x? since if f(x) = x2, f'(x) = 2x.

Thus R(T) = span{0, x, 2x2} = span{ x, 2x?}
= {p(x) € P,(R)| p(x) = ax + 2bx?, a,b € R}

Since x and 2x?2 are linearly independent, dimR(T) = 2.
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Ex. Suppose that T: R? - R? is linear and T(< 0,1 >) =< 2,3 > and
T(< 2,—1>) =< 1,2 >. IsT one-to-one?

By the previous theorem with V = W = R?, we have dimV = dimW = 2.

T is one-to-one if T is onto (i.e. R(T) = R?).

But since < 0,1 > and < 2,—1 > are linearly independent (one is not a
multiple of the other), they form a basis for V = R?. Thus we have:

R(T) = span{T(< 0,1 >), T(< 2,—1 >)} = span{< 2,3 >,< 1,2 >}.
But < 2,3 > and <1,2 > are also linearly independent and thus a basis for
W = R2.

Hence R(T) = R? and T is onto = T is one-to-one

Ex. Let V and W be vector spaces of equal (finite) dimension, and letT:V — W
be linear. Show that if dim(V) > dim(W), then T can’t be one-to-one.

Nullity(T) + Rank(T) = dim(V) > dim(W).
R(T) is a subspace of W so dim(R(T)) < dim(W).
Thus dim(N(T)) + Rank(T) > dim(W) = dim(N(T)) = 1.

Hence N(T) # {0} and T is not one-to-one.
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Theorem: Let V and W be vector spaces and suppose that {vy, ..., 1, } is a basis for
V. For wy, ...,w, € W, there exists exactly one linear transformation T:V - W

such that T (v;) = w;.
Proof: Givenanyv €V, v =a v, + ---a,V,, where aq, ..., a, are unique.
DefineT:V » W by T(v) = ayw; + -+ + a,w,.

Notice that T is linear since if u,s € I/, d € R we have:
u=>byv; +--byv, and s =c,v; +:-c,v, sowe get:
du+s = (db, + ¢;)v; + -+ (db, + ¢,))v, and

T(du+s) = (dby +c,)T(vy) + -+ (db, + c, )T (vy,)
= (dby + c;)w; + -+ (db,, + c, )W,
= d(byw; + -+ byw,) + (cywy + -+ +c,wy,)
= dT(u) + T(s).

T is unique because if U: V — W is a linear transformation with U(v;) = w; then
Uw) =a,U(wy) + -+ a,U(vy)
=awy +-  Faywy,
= T(v). (Since T(v;) = w;)

Hence U =T.

Corollary: Let V and W be vector spaces and suppose that {v, ..., v, } is a basis for
V. IfU,T:V - W are linear transformations with U(v;) = T(v;) for i = 1, ...,n,
thenU =T.

In other words, a linear transformation is defined by what it does to a set of basis
vectors.



