Basis and Dimension

Def. The vectors vq, v,, ..., U, form a basis for a vector space V, if and only
if:

i. Vq,Vy,..., Uy arelinearly independent

i. Span(vq,..,v,) =V

Ex. The standard basis for R3 is {e;, e,, e} where e; =< 1,0,0 >,
e, =<0,1,0 >, e3=<0,0,1>.
i. eq,ey, ez arelinearly independent because
c1€1 + Cye; + c3e3 =0

¢, <1,0,0 > 4c, < 0,1,0 > 4¢; < 0,0,1 >=< 0,0,0 >

< C1,Cp,C3 >=< 0,0,0 >
== C1 == Cz = C3 = 0.

i. Span(ey, ey, e3) = R3 because any vector < aq,a,,as > € R3 can be
written as:

<a,a,a3>=a,<100> +a,<0,1,0> +a3<0,0,1>

so Span(ey, e,,e3) = R3.

Similarly, the standard basis for R" is {e;, e,, ..., €}, where
e; =< 0,0,0,...,1,0,... >, 1inthe i*" component.



There is an infinite number of sets of 3 vectors that form a basis for R3.

Ex. Showv; =<1,0,1>, v,=<1,1,0>, andv; =<0,1,1 >formsa
basis for R3.

i. We saw in an earlier example that v;, v,, V3 are linearly independent.

ii. To seethat Span(vy, V,,73) = R3 notice that

any vector v € R3, can be represented by v =< a, b, ¢ >.
We need to show there exist c;, ¢,, c3 such that

c1V1 + v, + c3v3 =< a,b,c >
c¢1<1,01>+4¢,<1,1,0>4+¢3;<0,0,1>=<a,b,c>

<c+cy, cp+c3 ¢ +e3>=<a,b,c>

or 1 + Co

Ccp, +C3

C3:C.

=a

¢+

We solved this system of equation when we showed that x? + 1,
x + 1,and x? + x generated P, (R). We found that:

a—b+c
2

C1=

a+b—c
2

C2=

—a+b+c

C3 = 5

Thus Span(vy, v,, 73) = R3 and vy, v,, 13 is a basis for R3.



Ex. Show {E'! E12 E2! E?2} where
1 0 0 1
11 _ 12 _
B = o]' B = [0 o]

0 O] ’ £22 — [O 0]
forms a basis for M,,, (R) (this is called the standard basis for M,,,(R)).

i. Show {E',E1? E21 E?2} are linearly independent

C1E11 + C2E12 + C3E21 + C4E22 == O

alo ol el ol+ell o+ el 1=0 o
[C1 €27 _ 0 0]
C3 C4f L0 o0OF

Soc; = ¢, = c3 =c, = 0= {E', E'? E?! E?*} linearly independent.

i. Show Span(Ell, E12,E?1 E22) = M,,,(R). Givenany A € M,,,(R)
show A can be writtenas A = ¢;E* + ¢, E? 4+ ¢3 E?! + ¢,E?2.

a1 a12]

A= [
az1 Qzp

EM™ + c,EY2 + 3E?Y + ,E??2 = A

& o+l 2l+le o+l el=la ol

[C1 Cz]_[an a12]
[C3 (4 Az1 dz2



Similarly, if we define EY € M,,.,,(R) to be the matrix with a 1 in the i row
and j* column and 0 everywhere else, then

{EV|1<i<m, 1<) <n}isa basis for My, (R).

Ex. Show the set of polynomials {1, x, x2, ..., x™} is a basis for P,(R).

i. {1,x,x2,...,x"}is linearly independent since:
ci(D)+ () +c3(x®) + -+ e (x™) =0

= 1 =C; = =Cpyp = 0.
i. {1,x,x2,...,x"} spans P,(R) since given any p(x) € B,(R)
we have p(x) = ao + a;x + ayx? + -+ + a,x™ and
(D) +c(x)+ -+ (™) =ag + ayx + -+ + ax™
= €1 =0Qg C2 =01, C3=0ap, Cpyq = Ap.

Thus {1, x, x2, ..., x™} is a basis for B, (R).

{1,x,x2,...,x"} is called the standard basis for P,,(R).

Ex. Theinfinite set {1,x,x?, ...} is a basis for P(R), the vector space of
polynomials with real coefficients.



Theorem: Let V be a vector space and B = {v;, ..., v, } be a subset of V.
Then B is a basis for V if and only if each v € V can be uniquely
expressed as a linear combination of vectors in B, i.e.,

vV =aqV, + ayv, + -+ a,v, forunique a4, a,,...,a, € R.

Proof: Suppose B is a basis for V.
Thenforany v € V, v € span(B), because span(B) = V.
Suppose that there are two linear combinations of vy, ..., v, that
equal v.
vV=a.v +ayv, + -+ a,v,
v = by, + byv, + -+ by,

Then by subtraction we have:
0 = (a; — bv; + (az — by)vy + -+ (an, — bp)vy.

But v4, ..., Uy, are linearly independent so
al—b1=a2—b2=-'-=an—bn=0
and thus:
a = bl! a, = bz, vy, Ap = bn.

So v is uniquely expressed as a linear combination of v, ..., V,,.

Now let’s assume that every v € V can be uniquely expressed as a linear
combination of B = {vy, ..., v,,} and show that B is a basis for V.

Sincev = aq vy + ayv, + -+ a,v, = v € span{vy, ..., v, }.

Now let’s show that v, ..., v, are linearly independent.
Let’s suppose that ¢;v; + ¢V, + -+ + ¢V, = 0 and show that
C1=C =-=¢,=0.

We know that v has a unique representation:
v=a.v; +ayv, + -+ a,v,.



But since c,v; + cov, + -+ + ¢, v, = 0 we have:

v=(a;+c)v; + (a, +c)vy, + -+ (ap+c,)v,.

But since v has a unique representation we have:
(as + 1) =ay, ..., (ap + ¢p) = ay

Thus we have c; = ¢, = --- = ¢,, = 0 so that vy, ..., v, are linearly
independent and B = {v;, ..., v, } is a basis for V.

Theorem: If a vector space V is generated by a finite set S, then some subset
of S is a basis for V. Hence V has a finite basis.

Proof: LetS = {v, ..., v,} be a finite generating set for V.
Any single (nonzero) vector v, is linearly independent.

Continue adding vectors from S, if possible, such that {uy, ..., u}
are linearly independent (where u; = v,) and adding any vector
Uk, -+, Uy Will make the set linearly dependent.

But for any vector U1, ..., U, € S we have

Ui = aUq + -+ aguy
because if a set T is linearly independent and adding a vector u
makes the set dependent then u € Span(T).

Thus u; € span{uy, ..., U }.
Hence S € span{uy, ..., Uy}

Since S generates V, {u4, ..., Uy} generates V.
Thus {u4, ..., Uy } is a basis for V.

Theorem (Replacement Theorem): Let V be a vector space that is generated
by aset G = {vy, ... v, } © V containing exactly n vectors, and let

L ={wy,...,wy,} SV be alinearly independent subset of I/ containing m
vectors. Then m < n and there exists a subset H € G containing exactly

n — mvectors such that L U H generates V.



Proof: The proofis by induction on m.
m=0,L = ¢.
Now take H = G = {vy, ..., vy} and L U H = G which generates V.

Now assume the theorem is true for m > 0 and show it’s true for
m+ 1.

Let L = {wy, ..., W41} be m + 1 linearly independent vectors.
By an earlier theorem we know that {wy, ..., w,, } is also linearly
independent.

So we can apply the induction hypothesis to {wy, ..., w;,, }, that is
there exist n — m vectors Uy, ..., Up_;m © G such that
{Wy, .., Wy, Uq, ., Up_m } BENETAtES V.

Thus there exist a4, ..., Qy,, b1, ..., by—my such that
Wa1 = Wy + -+ amWy, + biuy + -+ byp_pnem (%).

Notice that n — m > 0 otherwise wy, ..., W;, .1 wouldn’t be linearly
independent. Hencen > m, i.e. n>2m+ 1.

Since Wy, ...., Wy,,41 are linearly independent, at least one b; # 0.
Let’s assume that b; # 0.

Now solve (*) for u,:

_ 1 a am b, bn—m
Ut = - Wmsr =3 W1 =7 Wi = m U = T T U

Now let H = {u,, ..., Up_;;}, Which hasn — (m + 1) vectors and
u; € span(L U H).

In addition, Wy, ..., Wy, Ug, ., Up_m € span(L U H).
Thus Wy, .o, Wy, Uq, wo, Uy © Span(L U H).

But span{wy, ..., Wy, Uy, oo, Up_mt =V, thus span(LUH) =V.



Corollary 1: Let V be a vector space having a finite basis. Then every basis for V
has the same number of vectors.

Proof: Suppose B = {vy, ..., v,} and C = {wy, .., w,} are both bases for V,
with k > n.

Then we can select a subset S € C with exactly n + 1 vectors.

Since S is linearly independent (because C is) and B generates V/,
The Replacement Theorem says that n + 1 < n which is a
contradiction.

Thus k * n.

Now reverse the rolls of B and C and we getn * k.
Hencen = k.

Def. A vector space is called finite dimensional if it has a basis consisting of a
finite number of vectors (by corollary 1 this is unique). The number of vectors
in any basis for I/ is called the dimension of V, denoted dim(V). A vector
space that is not finite dimensional is called infinite dimesional.

Ex. V = R™ with the usual addition and scalar multiplication has
dimensionn ase; =< 1,0,...,0 >, ...,e, =< 0,0,..,1 > is a basis for R2.

Ex. The vector space M,,,»,(R) has dimension mn as
{E”}, 1<i<m, 1<j<nwhereEY isamatrix witha 1 in the i
row and j* column and zeros elsewhere, is a basis.

Ex. The vector space P,(R) has dimensionn + 1 as {1,x,x2, ...,x"}isa
basis.

Ex. The vector space P(R) of all polynomials with real coefficients is an
infinite dimensional vector space. A basis for P(R) is given by
{1, x, x?, x3,..}.



Corollary 2: Let V be an n-dimensional vector space then:

a. Any finite generating set for V contains at least n vectors, and a generating
set for VV that contains exactly n vectors is a basis for I/.

b. Any linearly independent subset of VV that contains eactly n vectors is a
basis for I/.

c. Every linearly independent subset of VV can be extended to a basis for I/.

Proof: Let B = {v,, ..., v, } be a basis for V.

a. Let G be afinite generating set for I/.
By an earlier theorem some subset H € ( is a basis for V.
By corollary 1, H has exactly n vectors.
Since H € G, G must contain at least n vectors.
If G contains exactly n vectors then G = H and is a basis for V.

b. Let L be a linearly independent set containing exactly n vectors.
By the Replacement Theorem there is a subset H € B containing
n —n = 0 vectors such that L U H generates V.
Thus H = ¢ and L generates VV and is a basis for I/.

c. LetL = {wy, ..., wy,} alinearly independent subset of V.
By the Replacement Theorem there is a subset H € B containing
n — m vectors such that L U H generates V.
Since L U H contains at least n vectors by part “a”, L U H contains
exactly n vectors and is a basis for V.

Ex. The following sets cannot be bases for R3:

a. {<2,1,2>,<1,3,-2 >}

b. {<1,2,3> <-1,2,1>, <0,0,1>, <0,1,0 >}
because a basis for R3 must have exactly 3 vectors.
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Ex. We saw earlierthat< 1,1,0 >,< 1,0,1 >and < 0,1,1 > are linearly
independent vectors in R3. Since dim(R3) = 3, these vectors
are a basis for R3.

Ex. We saw earlierthat x?> + 1, x + 1, and x? + x are linearly
independent vectors in P, (R). Since dim(P2 (]R)) = 3, these vectors
are a basis for P, (R).

Ex. We saw earlier that [(1) (1)], [(1) ﬂ, [2 (1)], 1 (1)] generate the

vector space M,y (R). Since dim(szz(]R)) = 4, these vectors are a
basis for M5, (R).

Theorem: If W is a subspace of a finite dimensional vector space VV then W is
finite dimensional and dim(W) < dim(V). If dim(W) = dim(V) then
w=1V.

Proof: Let dim(V) = n.
If W = {0} then dim(W) = 0 < n.

If W # {0}, choose a nonzero vector w; € W.

{w, }is a linearly independent set.

Continue choosing vectors W, ..., Wy € W such that {wy, ..., w; }
is linearly independent.

Since V contains at most n linearly independent vectorsand W C V,
k <n.

But since adding any other vector in W to {wy, ..., Wy } makes the

set linearly dependent, {wy, ..., Wy } spans W and
dim(W) < dim(V).



If dim(W) = dim(V) then there are n linearly independent
vectors wy, ..., w, EW € V.
But then wy, ...,wy, isa basisforVand V = W.

Ex. The set of diagonal n X n matrices, D, is a subspace of M,,,(R). A
Basis for D is given by {E11, E?2 E33, ..., E™} where
E* =matrix with a 1 in the i*" row and column and zeros elsewhere.
Sodim(D) = n.

Ex. Let W S R3 be the subspace defined by
W = {< X1, X2, X3 >€ Rgl X1 — Xy +X3 = O}
Find a basis for W.

W is all vectors of the form < xq, x5, x3 >€ R3; x; —x, + x3 = 0.
ThUS x1 = xZ — X3.
HenceW ={<a—b, a, b >E R3| a,b € R}.

<a-—b,ab>=<aaq0>+<-b,0,b>
=a<110>+b<-1,0,1 >.

Thus< 1,1,0 >, < —1,0,1 > span V.
Toshow< 1,1,0 >and < —1,0,1 > are linearly independent, assume

a; <1,1,0 > +a, < —1,0,1 >=< 0,0,0 >
< a1 - az, al, az >=< 0,0,0 >

Thus we have:

al—a2=0
al :O :>a1:a2:0.
a2=0.

and< 1,1,0 >,< —1,0,1 > arelinearly independent.

Thus< 1,1,0 >, < —1,0,1 > is a basis for W.
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(Also note that for two vectors in R™ to be linearly dependent, one
vector must be a nonzero multiple of the other vector).

Ex. Let W = {< xq, %5, %3 SER3| x; —x, + x3 =0 and 2x; + x, — x3 = 0}
Find a basis for V.

W is the set of vectors in R3 that satisfy both x; — x, + x3 = 0 and
2x1 + x, — x3 = 0. Thus we need to solve these equations
simultaneously.

xl_xz +x3:0
2x1+x2—X3=0.

Multiply equation one by 2 and subtract it from equation two.

x1 _x2+ X3=O
3x2—BX3=0.

Divide equation two by 3.
X1 — %X, +x3=0
X, —x3 = 0.
Add equation two to equation one.
Xq =0
X, —x3 = 0.

Thus x; = 0and x, = x3.

So W is the set of vectors in R3 of the form
<0,aga>=a<0,1,1 >.

Thus< 0,1,1 > spans W.

A single vector is linearly independent, so < 0,1,1 > is a basis for W.



