Basis and Dimension

- Def. The vectors $v_1, v_2, ..., v_n$ form a **basis** for a vector space V, if and only if:
	- i. $v_1, v_2, ..., v_n$ are linearly independent
	- ii. $Span(v_1, ..., v_n) = V$
- Ex. **The standard basis for** \mathbb{R}^3 is $\{e_1, e_2, e_3\}$ where $e_1 = < 1, 0, 0 >$, $e_2 = 0, 1, 0 > 0, e_3 = 0, 0, 1 > 0.$
	- i. e_1, e_2, e_3 are linearly independent because

$$
c_1e_1 + c_2e_2 + c_3e_3 = 0
$$

$$
c_1 < 1, 0, 0 > +c_2 < 0, 1, 0 > +c_3 < 0, 0, 1 > = <0, 0, 0 >
$$

$$
\Rightarrow c_1 = c_2 = c_3 = 0.
$$
 $c1, c2, c3 > = < 0,0,0 >$

ii. Span $(e_1, e_2, e_3) = \mathbb{R}^3$ because any vector $\lt a_1, a_2, a_3 > \in \mathbb{R}^3$ can be written as:

 $a_1, a_2, a_3 \ge a_1 < 1, 0, 0 > a_2 < 0, 1, 0 > a_3 < 0, 0, 1 >$

so Span $(e_1, e_2, e_3) = \mathbb{R}^3$.

Similarly, **the standard basis for** \mathbb{R}^n is $\{e_1, e_2, ..., e_n\}$, where $e_i = < 0, 0, 0, ..., 1, 0, ... >, 1$ in the i^{th} component.

There is an infinite number of sets of 3 vectors that form a basis for \mathbb{R}^3 .

- Ex. Show $v_1 = 1, 0, 1 >$, $v_2 = 1, 1, 0 >$, and $v_3 = 0, 1, 1 >$ forms a basis for \mathbb{R}^3 .
	- i. We saw in an earlier example that v_1 , v_2 , v_3 are linearly independent.
	- ii. To see that Span $(v_1, v_2, v_3) = \ \mathbb{R}^3$ notice that any vector $v \in \mathbb{R}^3$, can be represented by $v =$. We need to show there exist c_1 , c_2 , c_3 such that

$$
c_1v_1 + c_2v_2 + c_3v_3 =
$$

$$
c_1 < 1, 0, 1> + c_2 < 1, 1, 0> + c_3 < 0, 0, 1> =
$$

$$
< c_1 + c_2, c_2 + c_3, c_1 + c_3> =
$$

$$
c_1 + c_2 = a
$$

\n
$$
c_2 + c_3 = b
$$

\n
$$
c_1 + c_2 = c
$$

We solved this system of equation when we showed that $x^2 + 1$, $x + 1$, and $x^2 + x$ generated $P_2(\mathbb{R})$. We found that:

$$
c_1 = \frac{a - b + c}{2}
$$

$$
c_2 = \frac{a + b - c}{2}
$$

$$
c_3 = \frac{-a + b + c}{2}.
$$

Thus Span $(v_1,v_2,v_3)=~\mathbb{R}^3$ and v_1 , v_2 , v_3 is a basis for $\mathbb{R}^3.$

Ex. Show $\{E^{11}, E^{12}, E^{21}, E^{22}\}$ where

$$
E^{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad E^{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

$$
E^{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \qquad E^{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
$$

forms a basis for $M_{2x2}(\mathbb{R})$ (this is called **the standard basis for** $M_{2x2}(\mathbb{R})$ **)**.

i. Show $\{E^{11}, E^{12}, E^{21}, E^{22}\}$ are linearly independent

$$
c_1 E^{11} + c_2 E^{12} + c_3 E^{21} + c_4 E^{22} = 0
$$

$$
c_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + c_4 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

$$
\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
$$

So $c_1 = c_2 = c_3 = c_4 = 0 \Longrightarrow \{E^{11}, E^{12}, E^{21}, E^{22}\}$ linearly independent.

ii. Show Span $(E^{11}, E^{12}, E^{21}, E^{22}) = M_{2x2}(\mathbb{R})$. Given any $A \in M_{2x2}(\mathbb{R})$ show A can be written as $A = c_1 E^{11} + c_2 E^{12} + c_3 E^{21} + c_4 E^{22}$.

$$
A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$

$$
c_1 E^{11} + c_2 E^{12} + c_3 E^{21} + c_4 E^{22} = A
$$

$$
\begin{bmatrix} c_1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & c_2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ c_3 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & c_4 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$

$$
\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
$$

So $c_1 = a_{11}$, $c_2 = a_{12}$, $c_3 = a_{21}$ and $c_4 = a_{22}$.

Similarly, if we define $E^{ij} \in M_{m \times n}(\mathbb{R})$ to be the matrix with a 1 in the i^{th} row and j^{th} column and 0 everywhere else, then $\{E^{ij}\bigm| 1\leq i\leq m,\,\,1\leq j\leq n\}$ is a basis for $M_{m\times n}(\mathbb{R}).$

Ex. Show the set of polynomials $\{1, x, x^2, ..., x^n\}$ is a basis for $P_n(\mathbb{R})$.

i.
$$
\{1, x, x^2, ..., x^n\}
$$
 is linearly independent since:
\n
$$
c_1(1) + c_2(x) + c_3(x^2) + ... + c_{n+1}(x^n) = 0
$$
\n
$$
\implies c_1 = c_2 = ... = c_{n+1} = 0.
$$

ii. $\{1, x, x^2, ..., x^n\}$ spans $P_n(\mathbb{R})$ since given any $p(x) \in P_n(\mathbb{R})$ we have $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ and

$$
c_1(1) + c_2(x) + \dots + c_{n+1}(x^n) = a_0 + a_1x + \dots + a_nx^n
$$

$$
\implies
$$
 $c_1 = a_0$, $c_2 = a_1$, $c_3 = a_2$, $c_{n+1} = a_n$.

Thus $\{1, x, x^2, ..., x^n\}$ is a basis for $P_n(\mathbb{R}).$

 $\{1, x, x^2, ..., x^n\}$ is called **the standard basis for** $\boldsymbol{P}_\textit{n}(\mathbb{R})$ **.**

Ex. The infinite set $\{1, x, x^2, ...\}$ is a basis for $P(\mathbb{R})$, the vector space of polynomials with real coefficients.

Theorem: Let V be a vector space and $B = \{v_1, ..., v_n\}$ be a subset of V. Then *B* is a basis for *V* if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors in B , i.e.,

$$
v = a_1v_1 + a_2v_2 + \dots + a_nv_n
$$
 for unique $a_1, a_2, \dots, a_n \in \mathbb{R}$.

Proof: Suppose B is a basis for V .

Then for any $v \in V$, $v \in span(B)$, because $span(B) = V$. Suppose that there are two linear combinations of $v_1, ..., v_n$ that equal ν .

$$
v = a_1v_1 + a_2v_2 + \dots + a_nv_n
$$

$$
v = b_1v_1 + b_2v_2 + \dots + b_nv_n.
$$

Then by subtraction we have:

$$
0 = (a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)v_n.
$$

But $v_1, ..., v_n$ are linearly independent so

 $a_1 - b_1 = a_2 - b_2 = \dots = a_n - b_n = 0$

and thus:

$$
a_1 = b_1, \ a_2 = b_2, \dots, \ a_n = b_n.
$$

So v is uniquely expressed as a linear combination of $v_1, ..., v_n$.

Now let's assume that every $v \in V$ can be uniquely expressed as a linear combination of $B = \{v_1, ..., v_n\}$ and show that B is a basis for V.

Since
$$
v = a_1v_1 + a_2v_2 + \cdots + a_nv_n \implies v \in span\{v_1, ..., v_n\}.
$$

Now let's show that $v_1, ..., v_n$ are linearly independent. Let's suppose that $c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$ and show that $c_1 = c_2 = \cdots = c_n = 0.$

We know that v has a unique representation:

$$
v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n.
$$

But since $c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$ we have:

$$
v = (a_1 + c_1)v_1 + (a_2 + c_2)v_2 + \dots + (a_n + c_n)v_n.
$$

But since ν has a unique representation we have:

 $(a_1 + c_1) = a_1, ..., (a_n + c_n) = a_n$

Thus we have $c_1 = c_2 = \cdots = c_n = 0$ so that v_1, \ldots, v_n are linearly independent and $B = \{v_1, ..., v_n\}$ is a basis for V.

Theorem: If a vector space V is generated by a finite set S, then some subset of S is a basis for V . Hence V has a finite basis.

Proof: Let $S = \{v_1, ..., v_n\}$ be a finite generating set for V.

Any single (nonzero) vector v_1 is linearly independent.

Continue adding vectors from S, if possible, such that $\{u_1, ..., u_k\}$ are linearly independent (where $u_1 = v_1$) and adding any vector $u_{k+1}, ..., u_n$ will make the set linearly dependent.

But for any vector $u_{k+1}, ..., u_n \in S$ we have

 $u_i = a_1 u_1 + \cdots + a_k u_k$

because if a set T is linearly independent and adding a vector u makes the set dependent then $u \in Span(T)$.

Thus $u_j \in span\{u_1, ..., u_k\}.$ Hence $S \subseteq span\{u_1, ..., u_k\}.$ Since S generates V, $\{u_1, ..., u_k\}$ generates V. Thus $\{u_1, ..., u_k\}$ is a basis for V.

Theorem (Replacement Theorem): Let V be a vector space that is generated by a set $G = \{v_1, ..., v_n\} \subseteq V$ containing exactly *n* vectors, and let $L = \{w_1, ..., w_m\} \subseteq V$ be a linearly independent subset of V containing m vectors. Then $m \leq n$ and there exists a subset $H \subseteq G$ containing exactly $n-m$ vectors such that $L \cup H$ generates V.

Proof: The proof is by induction on m .

 $m = 0, L = \phi$. Now take $H = G = \{v_1, ..., v_n\}$ and $L \cup H = G$ which generates V.

Now assume the theorem is true for $m > 0$ and show it's true for $m + 1$. Let $L = \{w_1, \ldots, w_{m+1}\}\$ be $m + 1$ linearly independent vectors. By an earlier theorem we know that $\{w_1, ..., w_m\}$ is also linearly independent.

So we can apply the induction hypothesis to $\{w_1, ..., w_m\}$, that is there exist $n - m$ vectors $u_1, ..., u_{n-m} \subseteq G$ such that $\{w_1, ..., w_m, u_1, ..., u_{n-m}\}$ generates V.

Thus there exist
$$
a_1, ..., a_m, b_1, ..., b_{n-m}
$$
 such that
\n
$$
w_{m+1} = a_1 w_1 + ... + a_m w_m + b_1 u_1 + ... + b_{n-m} u_{n-m}
$$
 (*).

Notice that $n - m > 0$ otherwise $w_1, ..., w_{m+1}$ wouldn't be linearly independent. Hence $n > m$, i.e. $n \ge m + 1$.

Since $w_1, ..., w_{m+1}$ are linearly independent, at least one $b_i \neq 0$. Let's assume that $b_1 \neq 0$.

Now solve (*) for
$$
u_1
$$
:
\n
$$
u_1 = \frac{1}{b_1} w_{m+1} - \frac{a_1}{b_1} w_1 - \dots - \frac{a_m}{b_1} w_m - \frac{b_2}{b_1} u_2 - \dots - \frac{b_{n-m}}{b_1} u_{n-m}.
$$

Now let $H = \{u_2, ..., u_{n-m}\}\$, which has $n - (m + 1)$ vectors and $u_1 \subseteq span(L \cup H)$.

In addition, $W_1, ..., W_m, u_2, ..., u_{n-m} \subseteq span(L \cup H)$.

Thus $w_1, ..., w_m, u_1, ..., u_{n-m} \subseteq span(L \cup H).$

But $span\{w_1, ..., w_m, u_1, ..., u_{n-m}\} = V$, thus $span(L \cup H) = V$.

Corollary 1: Let V be a vector space having a finite basis. Then every basis for V has the same number of vectors.

Proof: Suppose $B = \{v_1, ..., v_n\}$ and $C = \{w_1, ..., w_k\}$ are both bases for V, with $k > n$.

Then we can select a subset $S \subseteq C$ with exactly $n + 1$ vectors.

Since S is linearly independent (because C is) and B generates V , The Replacement Theorem says that $n + 1 \leq n$ which is a contradiction.

Thus $k \geq n$.

Now reverse the rolls of B and C and we get $n \geq k$. Hence $n = k$.

Def. A vector space is called finite dimensional if it has a basis consisting of a finite number of vectors (by corollary 1 this is unique). The number of vectors in any basis for V is called the **dimension of V**, denoted $dim(V)$. A vector space that is not finite dimensional is called **infinite dimesional**.

- Ex. $V = \mathbb{R}^n$ with the usual addition and scalar multiplication has dimension n as $e_1 = < 1, 0, ..., 0 >, ..., e_n = < 0, 0, ..., 1 >$ is a basis for \mathbb{R}^2 .
- Ex. The vector space $M_{m \times n}(\mathbb{R})$ has dimension mn as $\{E^{ij}\}\text{, } 1 \leq i \leq m$, $1 \leq j \leq n$ where E^{ij} is a matrix with a 1 in the i^{th} row and j^{th} column and zeros elsewhere, is a basis.
- Ex. The vector space $P_n(\mathbb{R})$ has dimension $n+1$ as $\{1,x,x^2,...,x^n\}$ is a basis.
- Ex. The vector space $P(\mathbb{R})$ of all polynomials with real coefficients is an infinite dimensional vector space. A basis for $P(\mathbb{R})$ is given by $\{1, x, x^2, x^3, ...\}.$

Corollary 2: Let V be an n -dimensional vector space then:

a. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V .

b. Any linearly independent subset of V that contains eactly n vectors is a basis for V .

c. Every linearly independent subset of V can be extended to a basis for V .

Proof: Let $B = \{v_1, ..., v_n\}$ be a basis for V.

- a. Let G be a finite generating set for V . By an earlier theorem some subset $H \subseteq G$ is a basis for V. By corollary 1, H has exactly n vectors. Since $H \subseteq G$, G must contain at least *n* vectors. If G contains exactly *n* vectors then $G = H$ and is a basis for V.
- b. Let L be a linearly independent set containing exactly n vectors. By the Replacement Theorem there is a subset $H \subseteq B$ containing $n - n = 0$ vectors such that $L \cup H$ generates V. Thus $H = \phi$ and L generates V and is a basis for V.
- c. Let $L = \{w_1, ..., w_m\}$ a linearly independent subset of V. By the Replacement Theorem there is a subset $H \subseteq B$ containing $n-m$ vectors such that $L \cup H$ generates V. Since $L \cup H$ contains at least n vectors by part "a", $L \cup H$ contains exactly n vectors and is a basis for V .

Ex. The following sets cannot be bases for \mathbb{R}^3 : a. $\{<2, 1, 2>, <1, 3, -2>\}$ b. $\{<1, 2, 3>, -1, 2, 1>, 0, 0, 1>, 0, 1, 0\}$ because a basis for \mathbb{R}^3 must have exactly 3 vectors.

- Ex. We saw earlier that $< 1, 1, 0 > 1, 1, 0 > 1$ and $< 0, 1, 1 > 1$ are linearly independent vectors in \mathbb{R}^3 . Since $\dim(\mathbb{R}^3) = 3$, these vectors are a basis for \mathbb{R}^3 .
- Ex. We saw earlier that $x^2 + 1$, $x + 1$, and $x^2 + x$ are linearly independent vectors in $P_2(\mathbb{R})$. Since $\dim\bigl(P_2(\mathbb{R})\bigr)=3$, these vectors are a basis for $P_2(\mathbb{R})$.
- Ex. We saw earlier that \vert 1 0 0 1 $\vert \,$, \vert 1 1 0 1 \vert , \vert 0 1 1 0 \vert , \vert 1 1 1 0] generate the vector space $M_{2\times 2}(\mathbb{R}).$ Since $\dim \bigl(M_{2\times 2}(\mathbb{R})\bigr) = 4$, these vectors are a basis for $M_{2\times2}(\mathbb{R})$.

Theorem: If W is a subspace of a finite dimensional vector space V then W is finite dimensional and $\dim(W) \leq \dim(V)$. If $\dim(W) = \dim(V)$ then $W = V$.

Proof: Let dim $(V) = n$. If $W = \{0\}$ then $\dim(W) = 0 \leq n$.

> If $W \neq \{0\}$, choose a nonzero vector $w_1 \in W$. ${w_1}$ is a linearly independent set. Continue choosing vectors $w_2, ..., w_k \in W$ such that $\{w_1, ..., w_k\}$ is linearly independent.

Since V contains at most *n* linearly independent vectors and $W \subseteq V$, $k \leq n$.

But since adding any other vector in W to $\{w_1, ..., w_k\}$ makes the set linearly dependent, $\{w_1, ..., w_k\}$ spans W and $\dim(W) \leq \dim(V)$.

If $\dim(W) = \dim(V)$ then there are *n* linearly independent vectors $w_1, ..., w_n \in W \subseteq V$. But then $w_1, ..., w_n$ is a basis for V and $V = W$.

- Ex. The set of diagonal $n \times n$ matrices, D, is a subspace of $M_{n \times n}(\mathbb{R})$. A Basis for D is given by $\{E^{11}, E^{22}, E^{33}, \dots, E^{nn}\}$ where E^{ii} =matrix with a 1 in the i^{th} row and column and zeros elsewhere. So dim(D) = n.
- Ex. Let $W \subseteq \mathbb{R}^3$ be the subspace defined by $W = \{ \langle x_1, x_2, x_3 \rangle \in \mathbb{R}^3 \mid x_1 - x_2 + x_3 = 0 \}.$ Find a basis for W .

W is all vectors of the form $\langle x_1, x_2, x_3 \rangle \in \mathbb{R}^3$; $x_1 - x_2 + x_3 = 0$. Thus $x_1 = x_2 - x_3$. Hence $W = \{ \langle a - b, a, b \rangle \in \mathbb{R}^3 \mid a, b \in \mathbb{R} \}.$ $a - b, a, b \geq c$ a, $a, 0 > +c$ -b, $0, b > c$ $= a < 1, 1, 0 > +b < -1, 0, 1 >$.

Thus $< 1, 1, 0 > 1, -1, 0, 1 >$ span W.

To show $< 1, 1, 0 >$ and $< -1, 0, 1 >$ are linearly independent, assume

$$
a_1 < 1, 1, 0 > +a_2 < -1, 0, 1 > = < 0, 0, 0 > \\ < a_1 - a_2, a_1, a_2 > = < 0, 0, 0 > \end{cases}
$$

Thus we have:

$$
a_1 - a_2 = 0
$$

\n $a_1 = 0$ $\Rightarrow a_1 = a_2 = 0.$
\n $a_2 = 0.$

and $< 1, 1, 0 > 0 < -1, 0, 1 > 0$ are linearly independent.

Thus $< 1, 1, 0 > 1, -1, 0, 1 > 1$ is a basis for W.

(Also note that for two vectors in \mathbb{R}^n to be linearly dependent, one vector must be a nonzero multiple of the other vector).

Ex. Let $W = \{ \langle x_1, x_2, x_3 \rangle \in \mathbb{R}^3 | x_1 - x_2 + x_3 = 0 \text{ and } 2x_1 + x_2 - x_3 = 0 \}$ Find a basis for W .

W is the set of vectors in \mathbb{R}^3 that satisfy both $x_1 - x_2 + x_3 = 0$ and $2x_1 + x_2 - x_3 = 0$. Thus we need to solve these equations simultaneously.

$$
x_1 - x_2 + x_3 = 0
$$

$$
2x_1 + x_2 - x_3 = 0.
$$

Multiply equation one by 2 and subtract it from equation two.

$$
\begin{aligned}\nx_1 - x_2 + x_3 &= 0 \\
3x_2 - 3x_3 &= 0.\n\end{aligned}
$$

Divide equation two by 3.

$$
x_1 - x_2 + x_3 = 0
$$

$$
x_2 - x_3 = 0.
$$

Add equation two to equation one.

$$
\begin{aligned}\nx_1 &= 0 \\
x_2 - x_3 &= 0.\n\end{aligned}
$$

Thus $x_1 = 0$ and $x_2 = x_3$.

So W is the set of vectors in \mathbb{R}^3 of the form $< 0, a, a > = a < 0, 1, 1 >$.

Thus < 0.1 , $1 >$ spans W.

A single vector is linearly independent, so < 0.1 , $1 >$ is a basis for W.