Error Estimation Using Taylor Polynomials

Recall that Taylor polynomials are given by:

$$
T_1(x) = f(a) + f'(a)(x - a)
$$

\n
$$
T_2(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2
$$

\n
$$
T_3(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3
$$

\n
$$
\vdots
$$

$$
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + \frac{f^n(a)}{n!}(x - a)^n.
$$

And that the remainder, or error term, after the n^{th} degree term is given by:

$$
R_n(x) = f(x) - T_n(x)
$$
, where

$$
R_n(x) = \frac{f^{n+1}(z)}{(n+1)!} (x - a)^{n+1}
$$
, for some *z* between *a* and *x*.

We can now approximate a function, $f(x)$, by a Taylor polynomial, $T_n(x)$, and calculate how big the error is between $T_n(x)$ and $f(x).$

Ex. Approximate $f(x) = \sqrt{x}$ with a Taylor polynomial of degree 3 at $a = 4$. How accurate is the approximation when $3 \le x \le 5$?

$$
T_3(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3
$$

$$
T_3(x) = f(4) + f'(4)(x - 4) + \frac{f''(4)}{2!}(x - 4)^2 + \frac{f'''(4)}{3!}(x - 4)^3
$$

$$
f(x) = x^{\frac{1}{2}}
$$

\n
$$
f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}
$$

\n
$$
f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}
$$

\n
$$
f''(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}
$$

\n
$$
f''(4) = -\frac{1}{4(4)\sqrt{4}} = -\frac{1}{32}
$$

\n
$$
f'''(4) = -\frac{1}{4(4)\sqrt{4}} = -\frac{1}{32}
$$

\n
$$
f'''(4) = \frac{3}{8(4^2)\sqrt{4}} = \frac{3}{256}
$$

$$
f(x) = \sqrt{x} \approx T_3(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3.
$$

Now we want to approximate how large the error could be if we use $T_3(x)$ to approximate the value of $f(x)$ when $3 \le x \le 5$.

$$
f(x) = T_3(x) + R_3(x)
$$
, where

$$
R_3(x) = \frac{f^4(z)}{4!} (x - 4)^4
$$
, when z is in between x and 4 and 3 $\leq x \leq 5$.

Since $f^4(x) = -\frac{15}{16}$ $\frac{15}{16} \chi^{-\frac{7}{2}}$ ² , we have:

 $R_3(x) = \frac{1}{4}$ $\frac{1}{4!}(-\frac{15}{16}$ $\frac{15}{16}Z^{-\frac{7}{2}}$ $\frac{1}{2}(x-4)^4$, when z is between x and 4 and $3 \leq x \leq 5.$

This means that *z* is also between 3 and 5, $3 \le z \le 5$.

How big in absolute value can $z^{-\frac{7}{2}}$ $\frac{1}{2}$ be if $3 \leq z \leq 5$?

Since we have a negative exponent, we want to see how small z 7 ² could be if we know $3 \le z \le 5$.

3 7 $\frac{1}{2} \leq z$ 7 $\overline{2}$ \rightarrow using a calculator we see that $46 < 3$ 7 $\frac{1}{2} \leq z$ 7 ², this means we can say $z^{-\frac{7}{2}}$ $\frac{7}{2} < \frac{1}{4}$ $\frac{1}{46}$.

Now we can estimate $|R_3(x)|$.

$$
|R_3(x)| = \left| \frac{1}{4!} \left(-\frac{15}{16} z^{-\frac{7}{2}} \right) (x-4)^4 \right| < \frac{1}{24} \left(\frac{15}{16} \right) \left(\frac{1}{46} \right) \left(1^4 \right) = \frac{15}{17,664} \approx 0.00085 \, .
$$

This means that if we wanted to approximate the value of, say $\sqrt{3.4}$, we could calculate $T_3(3.4)$ and know that the error in our approximation is no larger than 0.00085 (this would be true for any x where $3 \le x \le 5$).

Ex. Approximate $f(x) = e^{-x}$ with a third degree Taylor polynomial around $a = 0$. How accurate is the approximation when $-\frac{1}{3}$ $\frac{1}{2} \leq x \leq \frac{1}{2}$ $\frac{1}{2}$?

$$
T_3(x) = f(0) + f'(0) + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!}
$$

$$
f(x) = e^{-x} \t f'(0) = 1
$$

$$
f'(x) = -e^{-x} \t f'(0) = -1
$$

$$
f'''(x) = e^{-x} \t f'''(0) = 1
$$

$$
f'''(x) = e^x \t f'''(0) = -1
$$

$$
f''''(x) = e^x \t f'''(0) = 1
$$

 $e^{-x} \approx T_3(x) = 1 - x + \frac{x^2}{2!}$ $\frac{x^2}{2!} - \frac{x^3}{3!}$ 3! $R_3(x) = \frac{f^4(z)}{4!}$ $\frac{f(z)}{4!}$ x^4 , where *z* is between *x* and 0: \int $4(z) = e^{-z}$ $R_3(x) = \frac{e^{-x}}{4!}$ $\frac{1}{4!}x^4$

Since z is between x and 0, we also know $-\frac{1}{3}$ $\frac{1}{2} \leq z \leq \frac{1}{2}$ $\frac{1}{2}$. How large can e^{-z} be?

$$
e^{-z} \le e^{-\left(-\frac{1}{2}\right)} = e^{\frac{1}{2}} < 3
$$

$$
|R_3(x)| = \left|\frac{e^{-z}}{24}x^4\right| \le \left(\frac{3}{24}\right)\left(\frac{1}{2}\right)^4 \approx 0.0078.
$$

So $T_3(x)$ will be within 0.0078 of e^{-x} for any x with $-\frac{1}{2} \le x \le \frac{1}{2}$.

- a. For what value of x is $\sin(x^2) \approx x^2 \frac{x^6}{2!}$ $\frac{x^6}{3!} + \frac{x^{10}}{5!}$ 5! accurate to within 0.000001?
- b. Approximate $\int_0^1 \sin(x^2) \, dx$ using the first 3 non-zero terms of the Maclaurin polynomial for $f(x) = \sin(x^2)$. How accurate is the approximation?

a. Notice that the series for $\sin x$ is an alternating series. Thus the error between $\sin(x^2)$ and $x^2 - \frac{x^6}{3!}$ $\frac{x^6}{3!} + \frac{x^{10}}{5!}$ 5! is bounded by the absolute value of the next term in the series, i.e. $\left(x^2\right)^7$ $\frac{(z^2)^2}{7!} = \frac{x^{14}}{7!}$ $rac{1}{7!}$.

$$
\frac{x^{14}}{7!} \le 0.000001
$$

$$
x^{14} \le (0.000001)(5040)
$$

Using a calculator we get: $-0.685 \le x \le 0.685$.

Ex.

b.
$$
\int_0^1 \sin(x^2) dx = \int_0^1 \left(x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} \right) dx
$$

= $\frac{x^3}{3} - \frac{x^7}{7(3!)} + \frac{x^{11}}{11(5!)} \Big|_0^1$
= $\frac{1}{3} - \frac{1}{7(6)} + \frac{1}{11(120)}$
 ≈ 0.3103

$$
\int_0^1 \sin(x^2) dx = \int_0^1 \left[x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} + \dots + \frac{(x^2)^{2n-1}}{(2n-1)!} + \dots \right] dx
$$

= $x^3 - \frac{x^7}{7(3!)} + \frac{x^{11}}{11(5!)} - \frac{x^{15}}{15(7!)} + \dots \Big|_0^1$
= $\frac{1}{3!} - \frac{1}{7(3!)} + \frac{1}{11(5!)} - \frac{1}{15(7!)} + \dots$

So the error in the integral using the first 3 non-zero terms of the Maclaurin polynomial is given by:

$$
\frac{1}{15(7!)} \approx 0.000013.
$$