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                                 Taylor Series and Maclaurin Series 

     Taylor series and Maclaurin series are power series representations of functions 
(Maclaurin series is a special case of Taylor series where the power series 

representation is around 𝑎 = 0). 

     Suppose 𝑓(𝑥) has a power series representation around 𝑥 = 𝑎: 

𝑓(𝑥) = 𝑐0 + 𝑐1(𝑥 − 𝑎) + 𝑐2(𝑥 − 𝑎)2 + 𝑐3(𝑥 − 𝑎)3 + ⋯ + 𝑐𝑛(𝑥 − 𝑎)𝑛 + ⋯ 

           for   |𝑥 − 𝑎| < 𝑅;     𝑅 > 0. 

 

Notice that at 𝑥 = 𝑎 we get: 

    𝑓(𝑎) = 𝑐0 + 𝑐1(𝑎 − 𝑎) + 𝑐2(𝑎 − 𝑎)2 + 𝑐3(𝑎 − 𝑎)3 + ⋯ + 𝑐𝑛(𝑎 − 𝑎)𝑛 + ⋯   

    𝒇(𝒂) = 𝒄𝟎  . 

 

Now let’s calculate the derivatives of 𝑓(𝑥) at 𝑥 = 𝑎: 

𝑓′(𝑥) = 𝑐1 + 2𝑐2(𝑥 − 𝑎) + 3𝑐3(𝑥 − 𝑎)2 + ⋯ + 𝑛𝑐𝑛(𝑥 − 𝑎)𝑛−1 + ⋯ 

 

𝑓′(𝑎) = 𝑐1 + 2𝑐2(𝑎 − 𝑎) + 3𝑐3(𝑎 − 𝑎)2 + ⋯ + 𝑛𝑐𝑛(𝑎 − 𝑎)𝑛−1 + ⋯ 

  𝒇′(𝒂) = 𝒄𝟏  . 

          

   𝑓′′(𝑥) = 2𝑐2 + 3 ∙ 2𝑐3(𝑥 − 𝑎) + 4 ∙ 3𝑐4(𝑥 − 𝑎)2 + 

     … + 𝑛(𝑛 − 1)𝑐𝑛(𝑥 − 𝑎)𝑛−2 + ⋯ 

 

   𝑓′′(𝑎) = 2𝑐2, which means that 
𝒇′′(𝒂))

𝟐
= 𝒄𝟐  .    
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𝑓′′′(𝑥) = 3 ∙ 2𝑐3 + 4 ∙ 3 ∙ 2𝑐4(𝑥 − 𝑎) + 5 ∙ 4 ∙ 3𝑐4(𝑥 − 𝑎)2 + ⋯   

+𝑛(𝑛 − 1)(𝑛 − 2)𝑐𝑛(𝑥 − 𝑎)𝑛−3 + ⋯ 

 

   𝑓′′′(𝑎) = 3 ∙ 2𝑐3, which means that   
𝒇′′′(𝒂)

𝟑!
= 𝒄𝟑 .      

By the same reasoning: 

    𝑓𝑛(𝑎) = 𝑛! 𝑐𝑛, which means that  
𝒇𝒏(𝒂)

𝒏!
= 𝒄𝒏  .     

 

Theorem:  If 𝑓 has a power series expansion around 𝑥 = 𝑎, 

 

𝑓(𝑥) = ∑ 𝑐𝑛(𝑥 − 𝑎)𝑛∞
𝑛=0 ;  for |𝑥 − 𝑎| < 𝑅;    

then  𝑐𝑛 =
𝑓𝑛(𝑎)

𝑛!
    so we know     

𝒇(𝒙) = ∑
𝒇𝒏(𝒂)

𝒏!
(𝒙 − 𝒂)𝒏∞

𝒏=𝟎   

          = 𝒇(𝒂) + 𝒇′(𝒂)(𝒙 − 𝒂) +
𝒇′′(𝒂)

𝟐!
(𝒙 − 𝒂)𝟐 +

𝒇′′′(𝒂)

𝟑!
(𝒙 − 𝒂)𝟑 + ⋯     

              +
𝒇𝒏(𝒂)

𝒏!
(𝒙 − 𝒂)𝒏 + ⋯  

This is called the Taylor series of the function 𝑓 around 𝑥 = 𝑎. 

 

For the special case when 𝑎 = 0, the Taylor series becomes: 

𝒇(𝒙) = ∑
𝒇𝒏(𝟎)

𝒏!
∞
𝒏=𝟎 𝒙𝒏     

           = 𝒇(𝟎) + 𝒇′(𝟎)(𝒙) +
𝒇′′(𝟎)

𝟐!
(𝒙)𝟐 +

𝒇′′′(𝟎)

𝟑!
(𝒙)𝟑 + ⋯ +

𝒇
𝒏

(𝟎)

𝒏!
(𝒙)𝒏 + ⋯         

This is called the Maclaurin series of the function 𝑓.      
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Ex.   Find the Maclaurin series for 𝑓(𝑥) = 𝑒𝑥  (You need to know this series).  

 

     To find a Maclaurin series, we need to find 𝑓 and all of its derivatives at 𝑥 = 0     

      (for a general Taylor series around 𝑥 = 𝑎 we would need to find 𝑓 and its  

      derivatives at 𝑥 = 𝑎 and plug into the Taylor series formula). 

𝑓(𝑥) = 𝑒𝑥                             𝑓(0) = 𝑒0 = 1                            

𝑓′(𝑥) = 𝑒𝑥                           𝑓′(0) = 𝑒0 = 1 

𝑓′′(𝑥) = 𝑒𝑥                         𝑓′′(0) = 𝑒0 = 1  

𝑓′′′(𝑥) = 𝑒𝑥                        𝑓′′′(0) = 𝑒0 = 1  

⋮  

𝑓𝑛(𝑥) = 𝑒𝑥                         𝑓𝑛(0) = 𝑒0 = 1  

 

Now we plug into the Maclaurin series formula: 

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 + ⋯ +

𝑓𝑛(0)

𝑛!
(𝑥)𝑛 + ⋯  

           = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯ = ∑

𝑥𝑛

𝑛!
∞
𝑛=0 = 𝑒𝑥.        

 

Let’s find the radius of convergence of the Maclaurin series for 𝑒𝑥: 

𝑅 = lim
𝑛→∞

|
𝑥𝑛+1

(𝑛+1)!
∙

𝑛!

𝑥𝑛 |= lim
𝑛→∞

|
𝑥

𝑛+1
| = 0 ; for all values of 𝑥.     

Thus, 𝑅 = ∞ and  ∑
𝑥𝑛

𝑛!
∞
𝑛=0  converges for all values of 𝑥.  

 

So if 𝑓(𝑥) = 𝑒𝑥  has a power series expansion about 𝑥 = 0,  

then 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0    .         
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A Taylor Series (or Maclaurin Series) is a generalization of the linear        
approximation: 

 

 

 

 

 

 

 

𝑇1(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)             

𝑇2(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2   

𝑇3(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + 

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3          

⋮  

𝑇𝑛(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)

2!
(𝑥 − 𝑎)2 + 

𝑓′′′(𝑎)

3!
(𝑥 − 𝑎)3 

        + ⋯ +
𝑓

𝑛
(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛 .          

 

In general, 𝑓(𝑥)  is equal to its Taylor Series if: 

 

                   𝑓(𝑥) = lim
𝑛→∞

𝑇𝑛(𝑥) . 

 

The polynomials, 𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑛 are called Taylor Polynomials. 

 

𝑦 = 𝑓(𝑥) 𝑦 = 𝑇2(𝑥) 

𝑦 = 𝑇1(𝑥) 

𝑎 
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Ex.    Find the Taylor Polynomials 𝑇1, 𝑇2, 𝑇3, and 𝑇𝑛 for 𝑓(𝑥) = 𝑒𝑥 around  𝑥 = 0. 

 

           Since 𝑓𝑖(0) = 1,  for 𝑖 = 0,1,2, …  we have: 

 

𝑇1(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) = 1 + 𝑥       

       

𝑇2(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 = 1 + 𝑥 +

𝑥2

2
      

 

𝑇3(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3    

  = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
     

 

𝑇𝑛(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 + ⋯ +

𝑓𝑛(0)

𝑛!
(𝑥)𝑛  

  = 1 + 𝑥 +
𝑥2

2!
+ ⋯ +

𝑥𝑛

𝑛!
 .      

 

 

Let 𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑇𝑛(𝑥).   𝑅𝑛(𝑥) is called the Remainder of the Taylor series.  If 

we can show that lim
𝑛→∞

𝑅𝑛(𝑥) = 0, then we have:   

𝑓(𝑥) = lim
𝑛→∞

𝑇𝑛(𝑥) 

and the Taylor Series converges to the function. 
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Theorem:  If 𝑓(𝑥) has 𝑛 + 1 derivatives in an interval 𝐼 that contains 𝑥 = 𝑎, 

                    then for 𝑥 in 𝐼 there is a number 𝑧 between 𝑥 and “𝑎” such that: 

                 𝑅𝑛(𝑥) =
𝑓𝑛+1

(𝑧)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1  .     

   

1.   Notice that the RHS is close to the (𝑛 + 1)
𝑠𝑡

 order term of the Taylor series  

       
𝑓𝑛+1(𝑎)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1. 

2.    𝑅𝑛(𝑥) =
𝑓𝑛+1

(𝑧)

(𝑛+1)!
(𝑥 − 𝑎)𝑛+1 is called the Lagrange form of the remainder. 

 

 

Ex.      Show that for the function 𝑓(𝑥) = 𝑒𝑥 ,  lim
𝑛→∞

𝑅𝑛(𝑥) = 0 for all real   

            values of 𝑥, where 𝑅𝑛(𝑥) is the remainder of the Taylor polynomials 

 around 𝑥 = 0. 

 

Since we are using Taylor Polynomials around 𝑥 = 0, the Lagrange form of  the 

             remainder is:         𝑅𝑛(𝑥) =
𝑓

𝑛+1
(𝑧)

(𝑛+1)!
(𝑥)𝑛+1.       

We need to show that lim
𝑛→∞

𝑅𝑛(𝑥) = 0 for all real values of 𝑥. 

      

Case 1:  𝑥 > 0 ;  Since 𝑓(𝑥) = 𝑒𝑥 ,  𝑓(𝑛)(𝑥) = 𝑒𝑥.   

Thus, 𝑓(𝑛)(𝑧) = 𝑒𝑧, where 0 < 𝑧 < 𝑥. 

            So we have: 

                         0 < 𝑅𝑛(𝑥) =
𝑒𝑧

(𝑛+1)!
(𝑥)𝑛+1 <

𝑒𝑥

(𝑛+1)!
(𝑥)𝑛+1.     
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Notice for any fixed number 𝑥,     

               lim
𝑛→∞

𝑥𝑛

𝑛!
= 0 ; so we can say: 

               lim
𝑛→∞

𝑒𝑥𝑥
𝑛

𝑛!
= 0 ; thus by the squeeze theorem   

     lim
𝑛→∞

𝑅𝑛(𝑥) = 0. 

 

 

Case 2:  𝑥 < 0 ; so now   𝑥 < 𝑧 < 0,  which means that  𝑒𝑧 < 𝑒0 = 1.    

 

So we have: 

                            0 < |
𝑒𝑧

(𝑛+1)!
(𝑥)𝑛+1| < |

𝑥𝑛+1

(𝑛+1)!
| . 

 

  Once again we know lim
𝑛→∞

𝑥𝑛

𝑛!
= 0, so by the squeeze theorem 

lim
𝑛→∞

𝑅𝑛(𝑥) = 0.  

 

Thus, 𝑓(𝑥) = 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0   for all real values of 𝑥. 

 

 

In particular, for 𝑥 = 1 we get the following amazing series: 

𝑒1 = 𝑒 = ∑
(1)𝑛

𝑛!
∞
𝑛=0 = 1 +

1

1!
+

1

2!
+ 

1

3!
+

1

4!
+

1

5!
+ ⋯

1

𝑛!
+ ⋯ 
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Ex.      Find the Maclaurin series for 𝑓(𝑥) = cos(𝑥) and show that it equals cos 𝑥 

           for all 𝑥. 

 

 

To find a Maclaurin (or Taylor) series we have to find an expression for the 

 𝑛𝑡ℎ  derivative at 𝑥 = 0 (or 𝑥 = 𝑎 for a general Taylor series).   

In this case, there is a pattern in the derivatives of cos 𝑥, as well as sin 𝑥. 

𝑓(𝑥) = cos (𝑥)                           𝑓(0) = 1 

𝑓′(𝑥) = −sin (𝑥)                      𝑓′(0) = 0 

𝑓′′(𝑥) = −cos (𝑥)                   𝑓′′(0) = −1 

𝑓′′′(𝑥) = sin (𝑥)                     𝑓′′′(0) = 0 

𝑓4(𝑥) = cos(𝑥)                         𝑓4(0) = 1 

 

So the odd derivatives at 𝑥 = 0 are equal to 0 and the even derivatives,       

 i.e. the (2𝑛)
𝑡ℎ

 derivative is equal to (−1)𝑛.   

 

Now let’s plug into the Maclaurin series formula: 

𝑓(𝑥) = 𝑓(0) + 𝑓′(0)(𝑥) +
𝑓′′(0)

2!
(𝑥)2 +

𝑓′′′(0)

3!
(𝑥)3  

   + ⋯ +
𝑓

𝑛
(0)

𝑛!
(𝑥)𝑛 + ⋯  

                    = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ + (−1)𝑛 𝑥2𝑛

(2𝑛)!
+ ⋯ 

        = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!
∞
𝑛=0  .     
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Now let’s show that this series converges to cos 𝑥 for all real numbers. 

To do this, we must show that lim
𝑛→∞

𝑅𝑛(𝑥) = 0 for all real numbers 𝑥.   

 

Since we are using a Maclaurin series, i.e. “𝑎”= 0, the remainder has the form: 

      𝑅𝑛(𝑥) =
𝑓𝑛+1

(𝑧)

(𝑛+1)!
(𝑥)𝑛+1  ;  where 𝑧 is between 0 and 𝑥. 

 

Notice that every derivative of 𝑓(𝑥) = cos(𝑥) is either ± cos(𝑥) or ± sin(𝑥).   

 

In every case, we have |𝑓𝑘(𝑧)| ≤ 1.   

 

Thus we have: 

0 ≤ |𝑅𝑛(𝑥)| = |
𝑓𝑛+1

(𝑧)

(𝑛+1)!
(𝑥)𝑛+1| ≤ |

𝑥𝑛+1

(𝑛+1)!
|.    

 

Since lim
𝑛→∞

𝑥𝑛

𝑛!
= 0, by the squeeze theorem we have lim

𝑛→∞
𝑅𝑛(𝑥) = 0 for all real 

values of 𝑥.    

 

 

Thus, we have shown that the Maclaurin series converges to the function and: 

            cos(𝑥) = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ + (−1)𝑛 𝑥2𝑛

(2𝑛)!
+ ⋯                               

                           = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!
∞
𝑛=0  . 

You must know this series as well as the one for 𝐬𝐢𝐧 𝒙!! 
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Ex.  Find the Maclaurin series for 𝑓(𝑥) = sin(𝑥). 

 

 

We could find this series the same way we did for cos(𝑥), but it’s easier to just 

differentiate the series for cos (𝑥) and multiply by −1. 

𝑓(𝑥) = cos(𝑥)  = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ + (−1)𝑛 𝑥2𝑛

(2𝑛)!
+ ⋯ 

                  = ∑
(−1)𝑛𝑥2𝑛

(2𝑛)!
∞
𝑛=0  .     

 

          𝑓′(𝑥) = − sin(𝑥) = −𝑥 +
𝑥3

3!
−

𝑥5

5!
+

𝑥7

7!
+ ⋯ + (−1)

𝑛 𝑥2𝑛−1

(2𝑛−1)!
+ ⋯  

        

 

sin(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ + (−1)

(𝑛−1) 𝑥2𝑛−1

(2𝑛−1)!
    

       +(−1)(𝑛) 𝑥2𝑛+1

(2𝑛+1)!
+ ⋯  

                        = ∑
(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
∞
𝑛=0  . 

 

 

We can use the Maclaurin (or Taylor) series of known functions like 𝑒𝑥 , sin 𝑥, or cos 𝑥 
to find series for related functions. 
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Ex.  Find the Maclaurin series for 𝑓(𝑥) =
𝑒𝑥−1

𝑥
  and 𝑔(𝑥) = 𝑒−𝑥2

.   

 

        𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯  

𝑒𝑥 − 1 = 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯  

𝑒𝑥−1

𝑥
= 1 +

𝑥

2!
+

𝑥2

3!
+

𝑥3

4!
+ ⋯ +

𝑥𝑛−1

𝑛!
+ ⋯ = ∑

𝑥𝑛−1

𝑛!
∞
𝑛=1  . 

 

Now to find 𝑔(𝑥) = 𝑒−𝑥2
, just substitute −𝑥2 into the series for 𝑒𝑥. 

 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
+ ⋯  

      𝑒−𝑥2
= 1 + (−𝑥2) +

(−𝑥2)2

2!
+

(−𝑥2)3

3!
+

(−𝑥2)4

4!
+ ⋯ +

(−𝑥2)𝑛

𝑛!
+ ⋯  

 = 1 − 𝑥2 +
𝑥4

2!
−

𝑥6

3!
+

𝑥8

4!
+ ⋯ +

(−1)𝑛𝑥2𝑛

𝑛!
+ ⋯ = ∑

(−1)𝑛𝑥2𝑛

𝑛!
∞
𝑛=0  . 

 

Ex.  Find the Taylor series for 𝑓(𝑥) = 𝑒𝑖𝑥 and show 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥,     
      known as Euler’s Formula.  

𝑒𝑖𝑥 = 1 + (𝑖𝑥) +
(𝑖𝑥)2

2!
+

(𝑖𝑥)3

3!
+

(𝑖𝑥)4

4!
+ ⋯ +

(𝑖𝑥)𝑛

𝑛!
+ ⋯  

    = 1 + 𝑖𝑥 −
𝑥2

2!
−

𝑖3𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑖𝑛𝑥𝑛

𝑛!
+ ⋯  

    = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ + 𝑖 (𝑥 −

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯ ) 

    = cos 𝑥 + 𝑖 sin 𝑥 .  

          Notice that at 𝑥 = 𝜋 we get:                                                                              

                 𝑒𝜋𝑖 = 𝑐𝑜𝑠𝜋 + 𝑖𝑠𝑖𝑛𝜋 = −1     ⟹           𝑒𝜋𝑖 + 1 = 0  
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Ex.   Find the Maclaurin series for  𝑓(𝑥) =
sin(𝑥)−𝑥

𝑥3  .   

 

 

 

 

       sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
+ ⋯ +

(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
+ ⋯  

 

sin 𝑥 − 𝑥 = −
𝑥3

3!
+

𝑥5

5!
+ ⋯ +

(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
+ ⋯  

 

       
sin 𝑥−𝑥

𝑥3 =
−

𝑥3

3!
+

𝑥5

5!
+⋯+

(−1)𝑛𝑥2𝑛+1

(2𝑛+1)!
+⋯

𝑥3  

 

            = −
1

3!
+

𝑥2

5!
−

𝑥4

7!
… +

(−1)𝑛𝑥2𝑛−2

(2𝑛+1)!
+ ⋯  

 

            = ∑
(−1)𝑛𝑥2𝑛−2

(2𝑛+1)!
∞
𝑛=1  . 
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Ex.   Find the Taylor series for 𝑓(𝑥) = sin(𝑥) around 𝑎 = 𝜋. 

 

 

 

𝑓(𝑥) = sin(𝑥)                           𝑓(𝜋) = 0 

𝑓′(𝑥) = cos(𝑥)                        𝑓′(𝜋) = −1 

𝑓′′(𝑥) = −sin(𝑥)                   𝑓′′(𝜋) = 0 

𝑓′′′(𝑥) = −cos(𝑥)                 𝑓′′′(𝜋) = 1 

𝑓4(𝑥) = sin(𝑥)                        𝑓4(𝜋) = 0 

 

𝑓(𝑥) = 𝑓(𝜋) + 𝑓′(𝜋)(𝑥 − 𝜋) +
𝑓′′(𝜋)

2!
(𝑥 − 𝜋)2     

                                                                + ⋯ +
𝑓

𝑛
(𝜋)

𝑛!
(𝑥 − 𝜋)𝑛 + ⋯ 

 

Since 𝑓2𝑘(𝜋) = 0 we have: 

            = −(𝑥 − 𝜋) +
1

3!
(𝑥 − 𝜋)3 −

1

5!
(𝑥 − 𝜋)5            

                                                      + ⋯ +
(−1)𝑛+1

(2𝑛+1)!
(𝑥 − 𝜋)2𝑛+1 + ⋯ 

 

    𝑓(𝑥)  = ∑
(−1)𝑛+1

(2𝑛+1)!
(𝑥 − 𝜋)2𝑛+1∞

𝑛=0 . 
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Ex.      Find the Maclaurin series for 𝑓(𝑥) = (1 + 𝑥)𝑘, where 𝑘 is a real number. 

 

𝑓(𝑥) = (1 + 𝑥)𝑘                                                            

𝑓′(𝑥) = 𝑘(1 + 𝑥)𝑘−1                                                   

𝑓′′(𝑥) = 𝑘(𝑘 − 1)(1 + 𝑥)𝑘−2                                  

⋮                                                                                   

𝑓(𝑛)(𝑥) = 𝑘(𝑘 − 1) ⋯ (𝑘 − 𝑛 + 1)(1 + 𝑥)𝑘−𝑛          

 

𝑓(0) = 1  

𝑓′(0) = 𝑘  

𝑓′′(0) = 𝑘(𝑘 − 1)  

        ⋮                

𝑓𝑛(0) = 𝑘(𝑘 − 1) ⋯ (𝑘 − 𝑛 + 1)  

 

 

                                     𝑓(𝑥) = 𝑓(0) + 𝑓′(0)𝑥 +
𝑓′′(0)

2!
𝑥2 + ⋯

𝑓𝑛(0)

𝑛!
𝑥𝑛 + ⋯ 

(1 + 𝑥)𝑘 = 1 + 𝑘𝑥 +
𝑘(𝑘−1)

2!
𝑥2 + ⋯ +

𝑘(𝑘−1)…(𝑘−𝑛+1)

𝑛!
𝑥𝑛 + ⋯   
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Ex.   Find the Maclaurin series for   
𝑥2

√4+𝑥
 . 

 

 
1

√4+𝑥
= (4 + 𝑥)−

1

2 = 4−
1

2 (1 +
𝑥

4
)

−
1

2
=

1

2
(1 +

𝑥

4
)

−
1

2
     

notice this is similar to (1 + 𝑥)𝑘  , 𝑘 = −
1

2
 .    

 

(1 +
𝑥

4
)

−
1

2
= 1 −

1

2
(

𝑥

4
) +

1

2
(

3

2
) (

𝑥

4
)

2
+ ⋯                                               

                                              + (−
1

2
) (−

3

2
) … (−

1

2
− 𝑛 + 1) (

𝑥

4
)

𝑛
+ ⋯ 

 

𝑥2

√4+𝑥
=

1

2
[𝑥2 −

1

2
(

𝑥3

4
) +

1

2
(

3

2
) (

𝑥4

42) + ⋯                                                

                                          + (−
1

2
) (−

3

2
) … (−

1

2
− 𝑛 + 1) (

𝑥𝑛+2

4𝑛 ) + ⋯ ]. 
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Ex.    Evaluate ∫ 𝑒−𝑥2
𝑑𝑥

1

0
 using a Maclaurin series. Approximate ∫ 𝑒−𝑥2

𝑑𝑥
1

0
 to within 

         0.001 . 

 

 

∫ 𝑒−𝑥2
𝑑𝑥

1

0

= ∫ (1 − 𝑥2 +
𝑥4

2!
−

𝑥6

3!
+

𝑥8

4!
+ ⋯ ) 𝑑𝑥

1

0

 

 

                    = 𝑥 −
𝑥3

3
+

𝑥5

5(2!)
−

𝑥7

7(3!)
+

𝑥9

9(4!)
+ ⋯ |

0

1

  

 

                            = 1 −
1

3
+

1

5(2!)
−

1

7(3!)
+

1

9(4!)
−

1

11(5!)
+ ⋯  

 

This is an alternating series so the error after 𝑛 terms is less than the  absolute 

value of the (𝑛 + 1)𝑠𝑡 term. 

Notice that  
1

11(5!)
=

1

1320
< 0.001 so: 

 

∫ 𝑒−𝑥2
𝑑𝑥

1

0

≈ 1 −
1

3
+

1

5(2!)
−

1

7(3!)
+

1

9(4!)
≈ 0.7475 

with an error of less than 0.001 . 
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Ex.    Use Maclaurin series to find lim
𝑥→0

cos(𝑥3)−1+(.5)𝑥6

𝑥12   . 

 

      cos 𝑥 = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯  

 

cos( 𝑥3) = 1 −
(𝑥3)

2

2!
+

(𝑥3)
4

4!
−

(𝑥3)
6

6!
+ ⋯  

 

        = 1 −
𝑥6

2!
+

𝑥12

4!
−

𝑥18

6!
+ ⋯  

 

lim
𝑥→0

cos(𝑥3) − 1 +
1

2
𝑥6

𝑥12
= lim

𝑥→0

𝑥12

4!
−

𝑥18

6!
+ ⋯

𝑥12
 

                                                       = lim
𝑥→0

(
1

4!
−

𝑥6

6!
+ ⋯ ) =

1

4!
=

1

24
  . 
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Power series can be added, subtracted, multiplied and divided much like polynomials. 

 
 

Ex.   Find the first 3 non-zero terms in the Maclaurin series for: 

a. (𝑒𝑥)[ln(1 − 𝑥)]  
 
 

b. 
𝑥

sin (𝑥)
 

 

 

 

a.              𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ 

 

ln(1 − 𝑥) = 𝑥 +
𝑥2

2
+

𝑥3

3
+

𝑥4

4
+ ⋯  

 
 

     (𝑒𝑥)(ln(1 − 𝑥)) = (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ ) (𝑥 +

𝑥2

2
+

𝑥3

3
+

𝑥4

4
+ ⋯ ) 

 

                       = 𝑥 + (𝑥2 +
𝑥2

2
) + (

𝑥3

2
+

𝑥3

2
+

𝑥3

3
) + ⋯  

 
 

      = 𝑥 +
3

2
𝑥2 +

4

3
𝑥3 + ⋯  
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b.     sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯  

 

     
𝑥

sin 𝑥
=

𝑥

𝑥−
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+⋯ 

=
𝑥

𝑥(1−
𝑥2

3!
+

𝑥4

5!
−

𝑥6

7!
+⋯ ) 

      

   

               =
1

1−(
𝑥2

3!
−

𝑥4

5!
+

𝑥6

7!
+⋯ ) 

 

 
 

                = 1 + (
𝑥2

3!
−

𝑥4

5!
+

𝑥6

7!
+ ⋯ ) + (

𝑥2

3!
−

𝑥4

5!
+

𝑥6

7!
+ ⋯ )

2

+ ⋯  

 
 

                = 1 +
𝑥2

3!
−

𝑥4

5!
+ (

𝑥2

3!
−

𝑥4

5!
+ ⋯ ) (

𝑥2

3!
−

𝑥4

5!
+ ⋯ ) + ⋯  

 
 

       = 1 +
𝑥2

3!
−

𝑥4

5!
+

𝑥4

36
+ ⋯  

 

                          = 1 +
𝑥2

6
+ (

1

36
−

1

120
) 𝑥4 + ⋯ 

 

        = 1 +
𝑥2

6
+

7

360
𝑥4 + ⋯  

 

 

 

 


