Recall that earlier we saw that if $T: V \to V$ was a linear operator on an n -dimensional vector space represented in an ordered basis by a matrix A , then T (or A) was diagonalizable if

1. The characteristic polynomial splits over ℝ, ie

$$
p(\lambda) = \det(A - \lambda I) = c(\lambda_1 - \lambda) \cdots (\lambda_n - \lambda); \quad c \in \mathbb{R}
$$

2. For each eigenvalue λ_i , the multiplicity of λ_i equals the $\dim\bigl(N(T-\lambda_iI)\bigr).$

However, we also saw that if the characteristic polynomial of T splits over R that T might not be diagonalizable (eg, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 0 1]). Given that the characteristic polynomial of T splits over $\mathbb R$, we want to find an ordered basis for V so that T is as close to being diagonal as possible. We will see that we can find an ordered basis B for V such that:

$$
[T]_B = \begin{bmatrix} A_1 & 0 & 0 & \cdots & 0 \\ 0 & A_2 & 0 & \cdots & 0 \\ 0 & 0 & A_3 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_k \end{bmatrix}
$$

where 0 is a zero matrix and

$$
A_i = \begin{bmatrix} \lambda_i & 1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_i & 1 & \cdots & \cdots & 0 \\ 0 & 0 & \lambda_i & \ddots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \ddots & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix}.
$$

That is, each A_i will have λ_i , the i^{th} eigenvalue, along the diagonal, ones along the "superdiagonal" of A_i , and zeros everywhere else. The matrix $[T]_B$ is called the **Jordan canoncial form of T.**

Ex. Let $B = \{v_1, v_2, v_3, v_4\}$ be an ordered basis for V and $T: V \rightarrow V$ a linear operator with

$$
A = [T]_B = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.
$$

Identify $N(T - \lambda_i I)$ for each eigenvalue of T.

Notice that in this case:

$$
A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}
$$
, where $A_1 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ and $A_2 = [3]$.

The characteristic polynomial for T is

$$
det(A - \lambda I) = det \begin{bmatrix} 2 - \lambda & 1 & 0 & 0 \\ 0 & 2 - \lambda & 1 & 0 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 3 - \lambda \end{bmatrix}
$$

$$
= (2 - \lambda)^3 (3 - \lambda).
$$

Thus T has $\lambda = 2$ as an eigenvalue of multiplicity 3 and $\lambda = 3$ as an eigenvalue of multiplicity 1. Let's find the eigenvectors of T .

For $\lambda = 2$ we have to find vectors that span the null space of $A - 2I$:

$$
A - 2I = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

$$
(A - 2I)v = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

or
$$
\begin{bmatrix} x_2 \\ x_3 \\ 0 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
$$

So $x_2 = x_3 = x_4 = 0$ and x_1 can be any real number.

Thus the null space of $A - 2I$ is given by { $\lt a, 0,0,0 >$ | $a \in \mathbb{R}$ } and is spanned by $< 1, 0, 0, 0 >$. Since the basis for V is $\{v_1, v_2, v_3, v_4\}$, $v_1 = < 1, 0, 0, 0 >$ is an eigenvector associated with $\lambda = 2$ for T. We can check this by:

$$
Av_1 = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 2v_1.
$$

For $\lambda = 3$ we need to find the null space of

$$
A-3I = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
$$

$$
(A-3I)v = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

or
or

$$
\begin{bmatrix} -x_1 + x_2 \\ -x_2 + x_3 \\ -x_3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
$$

So we have:

$$
-x_1 + x_2 = 0
$$

$$
-x_2 + x_3 = 0
$$

$$
-x_3 = 0
$$

 \implies $x_1 = x_2 = x_3 = 0$, and x_4 can be any real number.

Thus the null space of $A - 3I$ is given by { < 0,0,0, $a > | a \in \mathbb{R}$ } and is spanned by < 0.0 , 0, 1 $>$.

Thus $v_4 = 0.0, 0.1 >$ is an eigenvector associated with $\lambda = 3$ for T.

So we can't diagonalize T because there are only 2 linearly independent eigenvectors for T and dim(V) = 4.

In our example the ordered basis for V was $B = \{v_1, v_2, v_3, v_4\}$ and v_1 and v_4 were eigenvectors for T, but not the basis vectors v_2 and v_3 . For example:

$$
T(v_2) = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} = v_1 + 2v_2.
$$

Thus $(T - 2I)v_2 = v_1$.

Similarly:

$$
T(v_3) = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} = v_2 + 2v_3.
$$

Thus $(T - 2I)v_3 = v_2$.

So neither v_2 nor v_3 is in the null space of $T - 2I$, however,

$$
(T - 2I)^2 v_2 = 0
$$

$$
(T - 2I)^3 v_3 = 0.
$$

That is, v_2 and v_3 are in the null space of $(T-2I)^2$ and $(T-2I)^3$ respectively.

We can see this because:

$$
(T-2I)v_2 = v_1
$$

and v_1 is in the null space of $(T - 2I)$ thus

$$
(T - 2I)[(T - 2I)v2] = (T - 2I)v1
$$

$$
(T - 2I)2v2 = 0.
$$

Now since $(T - 2I)v_3 = v_2$ and $(T - 2I)^2v_2 = 0$ we have:

$$
(T - 2I)v_3 = v_2
$$

$$
(T - 2I)^2 [(T - 2I)v_3] = (T - 2I)^2 v_2
$$

$$
(T - 2I)^3 v_3 = 0.
$$

So although v_2 and v_3 are not eigenvectors of T associated with $\lambda = 2$, that is

 $(T - 2I)v_2 = v_1 \neq 0$ and $(T - 2I)v_2 = v_2 \neq 0$,

 $(T - 2I)v_2 = v_1$ and $(T - 2I)^2v_3 = (T - 2I)[(T - 2I)v_3] = (T - 2I)v_2 = v_1$ are eigenvectors of T associated with $\lambda = 2$.

Def. Let T be a linear operator on a vector space V and $\lambda \in \mathbb{R}$. A nonzero vector $v \in V$ is called a **generalized eigenvector of T** corresponding to λ if $(T - \lambda I)^p(v) = 0$ for some positive integer p.

Notice that if $p = 1$ then v is an eigenvector of T.

If v is a generalized eigenvector of T and p is the smallest positive integer with $(T - \lambda I)^p(v) = 0$, then $(T - \lambda I)^{p-1}(v)$ is an eigenvector of T corresponding to $λ$ since: 0 = $(T - λI)^p(v) = (T - λI)[(T - λI)^{p-1}(v)].$

Thus $(T - \lambda I)^{p-1}(v) \neq 0$ is in the null space of $T - \lambda I$.

Ex. In the last example we showed that $(T - 2I)^2 \nu_2 = 0$ and $(T - 2I)^3 \nu_3 = 0$. Show these equations are true by calculating the matrix representation of $(T-2I)^2$ and $(T-2I)^3$ with respect to the ordered basis $B = \{v_1, v_2, v_3, v_4\}.$

With respect to the basis $B = \{v_1, v_2, v_3, v_4\}$ we have:

$$
A - 2I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
(A-2I)^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

$$
(A-2I)^3 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

$$
(A - 2I)^{2}v_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
(A-2I)^{3}v_{3} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
$$

So v_2 and v_3 are generalized eigenvectors of T corresponding to $\lambda = 2$.

Notice that two different linear operators can have the same characteristic polynomial. Thus knowing the characteristic polynomial of a linear operator does **not** immediately tell us if it's diagonalizable.

Ex. Given a basis $B = \{v_1, v_2, v_3, v_4\}$ for *V* and two different linear transformations:

$$
A = [T]_B = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$

$$
A' = [T']_B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}
$$

We have:

$$
p(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 & 0 & 0 \\ 0 & 2 - \lambda & 1 & 0 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 3 - \lambda \end{bmatrix}
$$

$$
= (2 - \lambda)^3 (3 - \lambda).
$$

$$
p'(\lambda) = \det(A' - \lambda I) = det \begin{bmatrix} 2 - \lambda & 0 & 0 & 0 \\ 0 & 2 - \lambda & 0 & 0 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 3 - \lambda \end{bmatrix}
$$

$$
= (2 - \lambda)^3 (3 - \lambda).
$$

So $p(\lambda) = \det(A - \lambda I) = p'(\lambda) = \det(A' - \lambda I)$, but A is not diagonalizable while A' is diagonalizable (since it's already diagonal).

Def. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The generalized eigenspace of T corresponding to λ , denoted K_{λ} , is

$$
K_{\lambda} = \{ v \in V \mid (T - \lambda I)^p v = 0, \text{ for some positive integer } p \}.
$$

Notice that K_λ is a subspace of V since if $v_1, v_2 \in K_\lambda$ then

$$
(T - \lambda I)^{p_1}v_1 = 0
$$
 for some p_1 , and $(T - \lambda I)^{p_2}v_2 = 0$ for some p_2 .

If we assume $p_2 \geq p_1$ then

$$
(T - \lambda I)^{p_2} (v_1 + cv_2) = (T - \lambda I)^{p_2} (v_1) + c(T - \lambda I)^{p_2} (v_2)
$$

=
$$
(T - \lambda I)^{(p_2 - p_1)} ((T - \lambda I)^{p_1} (v_1)) + c(0)
$$

=
$$
(T - \lambda I)^{(p_2 - p_1)} (0) + 0 = 0.
$$

Thus $(v_1 + cv_2) \in K_\lambda$ and K_λ is a subspace of V.

Notice also that the eigenspace, E_{λ} , associated with the eigenvalue λ is a subspace of K_{λ} since every eigenvector is also a generalized eigenvector. The following two theorems will be useful for calculating a basis for a vector space V so that a linear operator T is in Jordan form.

Theorem: Let T be a linear operator on a finite dimensional vector space V such that the characteristic polynomial of T splits over R, and let $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T with corresponding multiplicities $m_1, ..., m_k$. For $1 \le i \le k$ let B_i be an ordered basis for K_{λ_i} . Then

1.
$$
B_i \cap B_j = \phi
$$
 for $i \neq j$

- 2. $B = B_1 \cup \cdots \cup B_k$ is an ordered basis for V
- 3. $\dim(K_{\lambda_i})=m_i$ for all $i.$

Now we want to focus on how to find a basis for the generalized eigenspace that will give rise to Jordan canonical form for the linear operator T .

Def. Let T be a linear operator on a vector space V and let v be a generalized eigenvector of T corresponding to λ . Suppose that p is the smallest positive integer for which $(T - \lambda I)^p v = 0$. Then the ordered set:

$$
\{(T-\lambda I)^{p-1}\nu, (T-\lambda I)^{p-2}\nu, \ldots, (T-\lambda I)\nu, \nu\}
$$

Is called a **cycle of generalized eigenvectors of** T **corresponding to** λ **.**

 $(T - \lambda I)^{p-1}v$ and v are called the **initial vector** and the **end vector** of the cycle. The length of the cycle is p .

Since $(T - \lambda I)^p v = 0$, $(T - \lambda I)^{p-1} v$ is an eigenvector of T corresponding to λ and the other elements of the cycle are not eigenvectors.

Theorem Let T be a linear operator on a finite dimensional vector space V , and let λ be an eigenvalue of T. Then K_{λ} has an ordered basis consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ .

Putting a linear operator into Jordan canonical form

- 1. Find all eigenvalues by solving $\det(A \lambda I) = 0$, where $A = [T]_B$ for the given basis B .
- 2. Find all eigenvectors by solving $(A \lambda I)v = 0$.
- 3. For each eigenvalue λ of T, if the multiplicity of λ is larger than $dim[N(A - \lambda I)]$ then generalized eigenvectors are part of the basis to put T into Jordan canonical form.

Ex. Let $[T]_B = A =$ 4 6 −2 -1 -1 1 0 0 1 . Find a basis B' for V such that $[T]_{B'}$ is in

Jordan form. Find the Jordan form of A .

First let's find the eigenvalues of T .

$$
\det(A - \lambda I) = \det \begin{bmatrix} 4 - \lambda & 6 & -2 \\ -1 & -1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{bmatrix}
$$

= $(4 - \lambda)[(-1 - \lambda)(1 - \lambda)] - (-1)[6(1 - \lambda)]$
= $(1 - \lambda)[(-1 - \lambda)(4 - \lambda) + 6]$
= $(1 - \lambda)[\lambda^2 - 3\lambda + 2] = -(\lambda - 2)(\lambda - 1)^2 = 0$

So the eigenvalues are $\lambda = 2, 1$ (*double root*).

Now let's find the eigenvectors corresponding to $\lambda = 2$.

To find the null space of $(A - 2I)$ we must solve:

$$
(A-2I)v = \begin{bmatrix} 2 & 6 & -2 \\ -1 & -3 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
$$

Using row operations we get:

$$
\begin{bmatrix} 2 & 6 & -2 \ -1 & -3 & 1 \ 0 & 0 & -1 \ \end{bmatrix} \xrightarrow{\frac{1}{2}R_1 \to R_1} \begin{bmatrix} 1 & 3 & -1 \ -1 & -3 & 5 \ 0 & 0 & -1 \ \end{bmatrix} \xrightarrow{R_2 + R_1 \to R_2} \begin{bmatrix} 1 & 3 & -1 \ 0 & 0 & 4 \ 0 & 0 & -1 \ \end{bmatrix}
$$

$$
\overrightarrow{\frac{1}{4}R_2 \rightarrow R_2} \begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{R_2 + R_3 \rightarrow R_3} \begin{bmatrix} 1 & 3 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 + R_1 \rightarrow R_1} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

So we have:

$$
\begin{bmatrix} 1 & 3 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}
$$

$$
x_1 + 3x_2 = 0 \implies x_1 = -3x_2
$$

$$
x_3 = 0
$$

So the null space of $(A - 2I)$ is given by vectors of the form: $<-3a, a, 0>=a<-3, 1, 0>; a \in \mathbb{R}$.

Thus <-3 , 1, 0 $>$ is a basis for the null space and $v_1 = < -3$, 1, 0 $>$ is an eigenvector corresponding to $\lambda = 2$.

Now let's find the eigenvectors corresponding to $\lambda = 1$.

To find the null space of $(A - 1)$ we must solve:

$$
(A - I)v = \begin{bmatrix} 3 & 6 & -2 \\ -1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
$$

Using row operations we get:

$$
\begin{bmatrix} 3 & 6 & -2 \ -1 & -2 & 1 \ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 + 3R_2 \to R_1} \begin{bmatrix} 0 & 0 & 1 \ -1 & -2 & 1 \ 0 & 0 & 0 \end{bmatrix}
$$

$$
\overrightarrow{R_2-R_1\to R_2}\left[\begin{array}{ccc}0&0&1\\-1&-2&0\\0&0&0\end{array}\right]\overrightarrow{R_2\leftrightarrow R_1}\left[\begin{array}{ccc}-1&-2&0\\0&0&1\\0&0&0\end{array}\right]\overrightarrow{-R_1\to R_1}\left[\begin{array}{ccc}1&2&0\\0&0&1\\0&0&0\end{array}\right].
$$

So we have:

$$
\begin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}
$$

$$
x_1 + 2x_2 = 0 \implies x_1 = -2x_2
$$

$$
x_3 = 0.
$$

So the null space of $(A - I)$ is given by vectors of the form: $<-2a, a, 0>=a<-2, 1, 0>; a \in \mathbb{R}$.

Thus <-2 , 1, 0 $>$ is a basis for the null space and $v_2 =<-2$, 1, 0 $>$ is an eigenvector corresponding to $\lambda = 1$.

However, since the multiplicity of $\lambda = 1$ is 2, we have:

$$
2 = \dim(K_{\lambda}) = \{v \in V \mid (T - \lambda I)^{p} v = 0, \quad p \in \mathbb{Z}^{+}\}.
$$

Since there is only one eigenvector corresponding to $\lambda = 1$, and $\dim(K_\lambda) = 2$, when $\lambda = 1$, the basis of K_{λ} is made up one eigenvector and one vector that is a generalized eigenvector (but not an eigenvector). Since we know that for a generalized eigenvector there is a smallest p such that $(T - \lambda I)^p v = 0$ and that $(T - \lambda I)^{p-1}\nu$ is an eigenvector, for the generalized eigenvector in K_{λ} that is not the eigenvector v_2 we must have that $(A - \lambda I)v$ is an eigenvector. Thus to find v we can solve:

$$
(A - I)v = v_2
$$

$$
\begin{bmatrix} 3 & 6 & -2 \\ -1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}.
$$

Using row operations on the augmented matrix we get:

$$
\begin{bmatrix} 3 & 6 & -2 & -2 \\ -1 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \frac{-2}{R_1 + 3R_2 \rightarrow R_1} \begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \frac{1}{R_2 - R_1 \rightarrow R_2} \begin{bmatrix} 0 & 0 & 1 & 1 \\ -1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \frac{1}{R_2 - R_1 \rightarrow R_2} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

So we have:

$$
\begin{bmatrix} 1 & 2 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}
$$

$$
x_1 + 2x_2 = 0 \implies x_1 = -2x_2
$$

$$
x_3 = 1
$$

Solution set is: $<-2a$, a , $1>=< 0, 0, 1> +a < -2, 1, 0>$, $a \in \mathbb{R}$.

Taking $a=0$, we can take $v=v_3=< 0, 0, 1>$ as the 2^{nd} basis vector of K_{λ} .

So now if we take the basis vectors $B' = \{v_1, v_2, v_3\}$:

$$
v_1 = < -3, 1, 0 >
$$

$$
v_2 = < -2, 1, 0 >
$$

$$
v_3 = < 0, 0, 1 >
$$

 $[T]_{B'}$ will be in Jordan form. We can see this by taking the change of basis matrix P and calculating its inverse, P^{-1} (see notes on A Matrix's Rank and Calculating Inverse Matrices):

$$
P = \begin{bmatrix} -3 & -2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \implies P^{-1} = \begin{bmatrix} -1 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
$$

Now using the change of basis formula, $A' = P^{-1}AP$ we get:

$$
[T]_{B'} = A' = P^{-1}AP = \begin{bmatrix} -1 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 & -2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} -1 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -6 & -2 & -2 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
$$
, which is in Jordan canonical form.

Note: As soon as we saw that the characteristic polynomial split over ℝ and that $\lambda = 2$ was an eigenvalue of multiplicity one and $\lambda = 1$ was an eigenvalue of multiplicity two we knew that there was a basis B' for which:

$$
[T]_{B'} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.
$$

Most of the work of the previous example was to find the basis B' .

Ex. Let T be a linear operator on V. Given a basis $B = \{w_1, w_2, w_3\}$ T has the form

$$
[T]_B = A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}.
$$

Find the Jordan canonical form of T and the basis B' that puts T in Jordan canonical form.

First let's find the eigenvalues of T .

$$
\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 2 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{bmatrix}
$$

$$
= (2 - \lambda)^3 = 0.
$$

So $\lambda = 2$ is an eigenvalue of multiplicity 3.

Now let's find the eigenvectors for $\lambda = 2$.

To find the null space for $(A - 2I)$ we must solve:

$$
(A - 2I)v = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

$$
x_2 = 0 \implies x_2 = 0
$$

$$
2x_3 = 0 \implies x_3 = 0.
$$

So the null space of $(A - 2I)$ is given by $\lt a, 0, 0 \gt = a \lt 1, 0, 0 \gt; a \in \mathbb{R}$. Thus we can take $v_1 = 1, 0, 0 >$ as an eigenvector of A.

So the eigenspace E_{λ} has dimension equal to one. Since there is only one eigenvector, but $dimV = 3$, we need to find two generalized eigenvectors (that are not eigenvectors) v_2 and v_3 to complete the basis for V. Notice that the basis for K_{λ} can't be the union of two or three cycles because the initial vector of a cycle is an eigenvector and there is only one eigenvector for A . Thus the basis for K_{λ} must be a single cycle of length 3, $B' = \{(A - 2I)^2 \nu, (A - 2I)\nu, \nu\}$, where $(A-2I)^2v$ is an eigenvector of A.

So let's solve $(A - 2I)^2 v = v_1$.

$$
(A - 2I)^2 v = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$

$$
2x_3 = 1 \implies x_3 = \frac{1}{2}.
$$

So the solution set is $< a, b, \frac{1}{2}$ $\frac{1}{2}$ >; $a, b \in \mathbb{R}$ or

$$
a < 1, 0, 0 > +b < 0, 1, 0 > + < 0, 0, \frac{1}{2} >.
$$

So if we take $v = v_3 = < 0, 0, \frac{1}{2}$ $\frac{1}{2}$ > (ie take $a = b = 0$) we have:

$$
v_2 = (A - 2I)v_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.
$$

So the basis B' for Jordan canonical form is given by:

$$
v_1 = 1, 0, 0 >
$$

\n
$$
v_2 = 0, 1, 0 >
$$

\n
$$
v_3 = 0, 0, \frac{1}{2} >
$$

We can check that this basis puts A in Jordan canonical form by taking the change of basis matrix P and its inverse P^{-1} and calculating $A' = P^{-1}AP$.

$$
P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \implies P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}
$$

$$
[T]_{B'} = A' = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}
$$

$$
= \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \text{ which is in Jordan canonical form.}
$$