Separable Differential Equations

d
Def. A first order differential equation, d_ic} = H(x,y), is called separable if we

can write H(x,y) = g(x)h(y).

In that case:
= = 9(ORE)
ﬁ dy = g(x)dx
then,
4y = [ 9Godx.

Ex. Solve the initial value problem

dy

— = —8xy; y(0) = 4.

Notice that H(x,y) = (—8x)(y) = g(x)h(y).

o —8xdx
y
f% = [ —8xdx

In|y| + ¢; = —4x% + ¢,
In|y| = —4x2 + c5
elnlyl — e—4x2+c3

2 2
ly| = e **" . e% = Ae™**"; (general solution).



y(0) = 4 so,
y(0)] = 4 = Ae™*®”
4=2A4e"=A
So, |y| = 4~
Buty(0) =4 > 0soy > 0nearx = 0.
Thusy = |y| and

— 42 _ _
#X" " (particular solution).

y =4e

Ex. Solve the initial value problem
dy = 5-4x

== yapn YD =2

d_y _ 5-4x _ (
dx  4y3+2y (5 4x)

) = 9GO,

4y3+2y
(4y3 + 2y)dy = (5 — 4x)dx
J4y® +2y)dy = [(5 — 4x)dx
y*+y%2+c;, =5x—2x*+c,

y4 + yz = 5x —2x% + c3 (general solution).

One can’t easily solve this equation for y in terms of X, so we leave the

solution in this form. This equation represents a set of curves in the x-y plane
dy 5—4x ] ) ]

where == = — at every point (x, y) that fits the equation
dx 4y°>+2y

y* 4+ y? = 5x — 2x% + c5.




Notice that if you differentiate this equation implicitly you will get
dy _ 5-4x
dx  4y3+2y°
Now for the particular solution to the initial value problem we plug in

y* + y? =5x — 2x% + c3:

y(1) = 2 into
2 +22=5(1) - 2(1)%* + ¢35
20=5—-2+4¢;
17 = ¢3

So the solution to the initial value problem is:
y* +y? =5x — 2x% + 17.

d 1
Ex. Find the general solution to yd—z — (8x%y)3 = 0.
d 1 2 1
y 7 = (8x%y)3 = 2x3y5
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2 2
y3dy = 2x3dx

2 2
[y3dy = [ 2x3dx



PR +C=-x3+¢
5 5

—y3 ==-x3+cC3
5 5

5 5

y3 = 2x3 4y

5 3

y = (2x3 4+ ¢4 )5.

Ex. Find the particular solution to the initial value problem:

dy 1
Y= = 3e(*¥2y); 0) = =In(5).
e’ e ; y(0) 3 n(s5)
dy _ 3e3%
y 2L — 2,B3x=2y) —
e I 3e 2y

o3y WY _ 3,3x
dx

e3Ydy = 3e3*dx
[e3Ydy = [ 3e3*dx
%633’ +c =e¥ + ¢

1
5833’ =e3* + ¢y

e3Y =3e3* + ¢,



3y = In(3e3* + ¢,)

y = %ln(363x +c,) (general solution).

y(0) = %ln 5 so,
1 1 0 1
gln 5= gln(Se +cy) = 51n(3 + cy)

In5=In(3 +¢,)
5=3+C4
C4=2

y = %]n(363x + 2) (particular solution).

Population Growth and Continuously Compounded Interest

Both population growth and continuously compounded interest can be

dpP
modeled based on the rate of change, (E), being a constant multiple of the

amount (kP (t)). So:

ap

T kP; where k is the annual growth rate.

Separating variables we get:

1dP = kdt
5dP =



jldP =fkdt

P

InP+c; =kt+c, (since P(t)>0)
InP =kt +c;

InpP _ e(kt+c3) — ekt . e€3

e

P(t) = c et (general solution).

If Py = P(0), then
PO =P(0) =C4_eO=C4

So, P(t) = Pye*t  (particular solution).

Ex. The population of a town in 2010 was 100,000. The town’s
population in 2013 was 134,986.

a) Find the annual growth rate.
b) How long does it take for the population to double?

a) P(t) = 100,00e*t
P(3) = 134,986
134,986 = 100,000e3%

1.34986 = e3¥
In(1.34986) = 3k now using a calculator we get:
.3 = 3k

k=.1 So the annual growth rate is 10%.



b) 200,000 = 100,000e*

2=e.1t
In2 =.1t
10ln2 =t

t = 6.93 years for the population to double.

Radioactive decay also has the property that the rate of decay is proportional to

dN
the amount present so i —kN, k = annual decay rate> 0, and

N(t) = amount present > 0.

dN
— = —kdt
N
dN
—~ = J —kdt
InN = —kt + C1
eIl N — o—kt+tcy — o=kt 5¢q

N(t) = c,e ™  (general solution)

If No = N(0), then
Ny, = N(0) = c,e O =,

So, N(t) = Nye %t (particular solution).



Ex. Different elements have different decay rates. For example, Carbon 14,
which is used in estimating the age of some objects, has an annual decay rate of
k =.0001216. A piece of charcoal turns out to contain 58% as much Carbon 14
as a sample of present day charcoal of equal mass. What is the age of the sample?

58N, = Nye kt = N, e 0001216t

0.58 = e—.0001216t

In(0.58) = —.0001216t

In(0.58)
—.0001216

t = 4480 years old.

Continuously Compounded Interest

If we start with $1,000 and a 6% interest rate compounded annually, then after 1
year we have:

$1000(1 + 0.06) = $1060 (annual compounding)

After 2 years we have:

($1000(1 +.06))(1 +.06) = $1000(1.06)? = $1123.60

After t years we have:

$1000(1.06)°.



If the interest rate is compounded twice a year (i.e. bi-annually), then after 1 year
we have:

2
$1000 (1 + %) = $1060.90

After t years we would have:

$1000 (1 + %)Zt.

For a general annual interest rate of r% compounded n times per year, an initial
amount of A, dollars will grow in t years to:

Ao (1+ %)nt

If we invest $1000 at a 6% annual rate for 3 years, the amount we have at the
end will depend on how many times per year it is compounded.

Compounding Periods/ Year

Final Amount

1 $1000(1.06)% = $1191.02
2 $1000(1.03)° = $1194.05
4 $1000(1.015)1% = $1195.62
12 $1000(1.005)3¢ = $1196.68

365 06)\1095

$1000 (1+:2) = $1197.20



What happens if we let the number of compounding periods per year, 1n, go to
infinity? This is called continuous compounding.

A(®) = lim 4 (1 + %)nt

- o tim [(142) ]

rt

n
Letm = —
T
rt

=4 lim [(1+ %)m]

m-—0o

_ rt
= Age'".

Notice that A(t) = Aye'" satisfies the differential equation:

dA
Z=rA®);  A®) = A,

where 1" is the annual continuously compounded interest rate.
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Ex. Suppose you start with $1000 in an account where the money is continuously
compounded at an annual interest of . After 3 years the amount of money has

grown to $1,116.28. Find .

A(t) = Age™; Ay = $1000, A(3) = $1,116.28.
1116.28 = A(3) = 1000e ™3
1.11628 = 3"
In(1.11628) = 3r.

%1n(1.11628) =r = r=~00367, r=~3.67%

Newton’s Law of Cooling (or Heating): The rate of change of the temperature of
an object, T, being immersed in a medium of constant temperature A4 is
proportional to the difference A — T'. So we have:

dT
—C=k(A-T),

Ex. Aroast, initially at a temperature of 40°F, is placed in a 400°F oven at
5:00 pm. After 90 minutes the temperature of the roast is 150°F. Find:

a) Aformula for the temperature of the roast after t minutes.
b) When will the roast have a temperature of 160°F?



12

aT

a) o = k(400 — T)
—_dT = kdt
400-T
1
f400_T dT = [ kdt
—In(400 —T) + ¢c; = kt + ¢, (since 400 — T > 0)

—In(400 —T) = kt + c3
In(400 — T) = —kt — c5

eln(400—T) — e—kt—C3 kt e—C3

= e
400 — T = ce™®

T(t) = 400 — c,e™ ™ (general solution)

T(0) = 40, so
40 = T(0) = 400 — c,e % = 400 — ¢,

= ¢, = 360.

SO, T(t) = 400 — 360e~%t  (particular solution).
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We are given that T(90) = 150, so
150 = T(90) = 400 — 360e <50
—250 = —360e 20k

25 _ p—90k
36
In (2—2) = —90k
—5n(5)) =k
.00405 ~ k

So T(t) = 400 — 360e00405¢

b) Whenis T(t) = 160?
160 = 400 — 360e 00405t
—240 = —3606_'00405t

2 _ p—00405t
3
In (g) — —.00405¢
t=— ! In (E) ~ 100 minutes
00405 \3

So the roast is at 160°F at 6:40 pm.



