The Fundamental Theorem of Calculus- HW Problems

- 1. Let f be integrable on [a, b] and let $F(x) = \int_a^x f$.
 - a. Show the total variation of *F* on [a, b], TV(F), satisfies $TV(F) \le \int_a^b |f|$ and thus *F* is of bounded variation on [a, b].
 - b. Write F(x) as the difference of two monotonic increasing, absolutely continuous functions. That is, find $F_1(x)$ and $F_2(x)$ such that $F(x) = F_1(x) - F_2(x)$ and $F_1(x)$ and $F_2(x)$ are increasing and absolutely continuous.

2. Let φ be the Cantor function. φ is continuous and increasing on [0,1]. Using a method discussed in the section called The Fundamental Theorem of Calculus, prove that φ is not absolutely continuous.

3. Suppose that g is absolutely continuous on [a, b]. Prove that g is Lipschitz on [a, b] if an only if there is a c such that $|g'(x)| \le c$ a.e. on [a, b].

4. Suppose that g is continuous on [a, b] and differentiable a.e. on (a, b). Prove that if $Diff_{\frac{1}{n}}g$ is uniformly integrable over [a, b] then $\int_{a}^{b} g' = g(b) - g(a)$.

5. Suppose that f is continuous on [a, b] and differentiable a.e. on (a, b). Prove that $\int_a^b f' = f(b) - f(a)$ if and only if $\int_a^b \lim_{n \to \infty} Diff_{\frac{1}{n}} f = \lim_{n \to \infty} \int_a^b Diff_{\frac{1}{n}}$.

6. Suppose that f is continuous on [a, b] and differentiable a.e. on (a, b). In addition, there is a nonnegative function g which is integrable over [a, b] and $|Diff_{\frac{1}{n}}f| \leq g$ a.e. on [a, b] for all n. Prove that $\int_{a}^{b} f' = f(b) - f(a)$.