The Integral Test:

Let's examine the series: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$

If we exclude the first rectangle, notice:

$$\sum_{n=2}^{\infty} \frac{1}{n^2} \le \int_1^{\infty} \frac{1}{x^2} dx = \lim_{b \to \infty} \int_1^b x^{-2} dx = \lim_{b \to \infty} -(b^{-1} - 1^{-1})$$
$$= \lim_{b \to \infty} -(\frac{1}{b} - 1) = 1.$$

Since the first term of the original series is 1 we have:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \le 1 + 1 = 2$$

So $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges because the partial sums $\{S_n\}$ are bounded and increasing.

Notice that:

$$\int_{1}^{\infty} \frac{1}{x} dx \le \sum_{n=1}^{\infty} \frac{1}{n}$$

But we have:

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} (\ln(b) - \ln(1)) = \infty$$

So $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

- Integral Test Theorem: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then $\sum_{n=1}^{\infty} a_n$ is convergent, if and only if, $\int_1^{\infty} f(x) dx$ is convergent. That means:
- a. If $\int_{1}^{\infty} f(x) dx$ converges (i.e., is finite), then $\sum_{n=1}^{\infty} a_n$ converges.
- b. If $\int_1^{\infty} f(x) dx$ diverges (i.e., is infinite), then $\sum_{n=1}^{\infty} a_n$ diverges.

Notes:

- 1. You need to be able to determine if the resulting integral converges.
- 2. Be aware that to use the integral test we DO NOT need to start at n = 1.

For example, to test
$$\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$$
 we use $\int_4^{\infty} \frac{1}{(x-3)^2} dx$.

3. It's not necessary that f(x) is always decreasing. It just needs to be decreasing from some point onward.

Ex. Determine the convergence of $\sum_{n=5}^{\infty} \frac{1}{(n-4)^2}$.

$$f(x) = \frac{1}{(x-4)^2} \text{ is a decreasing function for } x \ge 5 \quad (f'(x) < 0) \text{ and}$$
$$\int_{5}^{\infty} \frac{1}{(x-4)^2} dx = \lim_{b \to \infty} \int_{5}^{b} \frac{1}{(x-4)^2} dx = \lim_{b \to \infty} \int_{5}^{b} (x-4)^{-2} dx$$
$$= \lim_{b \to \infty} -(x-4)^{-1} |_{5}^{b}$$
$$= \lim_{b \to \infty} -[(b-4)^{-1} - (5-4)^{-1}]$$
$$= \lim_{b \to \infty} -(\frac{1}{b-4}) + 1 = 1.$$

Thus the series $\sum_{n=5}^{\infty} \frac{1}{(n-4)^2}$ converges.

Ex. For what values of p does the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge?

This is called a p-series (This is an important example).

If
$$p < 0$$
, $\lim_{n \to \infty} \frac{1}{n^p} = \infty$ and if $p = 0$, $\lim_{n \to \infty} \frac{1}{n^0} = 1$.

In both cases, $\lim_{n\to\infty} a_n \neq 0$ so $\sum_{n=1}^{\infty} \frac{1}{n^p}$, $p \leq 0$ diverges by the divergence test.

When we discussed improper integrals we found $\int_1^\infty \frac{1}{x^p} dx$ converged if p > 1 and diverged if $p \le 1$.

If p > 0, then $f(x) = \frac{1}{x^p}$ is continuous, positive, and decreasing on $[1, \infty)$.

So by the integral test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for 0 .

So $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for $p \le 1$.

Ex. Determine the convergence of the following series:

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

a. $\sum_{n=1}^{\infty} \frac{1}{n^4}$ is a *p*-series with $p = 4 > 1 \Rightarrow$ the series converges.

b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
 is a *p*-series with $p = \frac{1}{3} \le 1 \Rightarrow$ the series diverges.

Ex. Determine the convergence of $\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^2}$.

$$f(x) = \frac{1}{x(\ln x)^2}$$
 is positive and continuous for $x > 2$.

It is also decreasing because x and $\ln x$ are increasing functions (or you can show f'(x) < 0 for x > 2).

Thus, we can apply the integral test:

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{x(\ln x)^{2}}$$

Let
$$u = \ln x$$
; $x = 2 \Rightarrow u = \ln 2$
 $du = \frac{1}{x}dx$; $x = b \Rightarrow u = \ln b$.

Now substitute:

$$= \lim_{b \to \infty} \int_{u=\ln 2}^{u=\ln b} \frac{1}{u^2} du = \lim_{b \to \infty} -\frac{1}{u} \Big|_{u=\ln 2}^{u=\ln b}$$
$$= \lim_{b \to \infty} -\left[\frac{1}{\ln b} - \frac{1}{\ln 2}\right] = \frac{1}{\ln 2}$$

So the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges by the integral test.

Ex. Determine the convergence of $e^{-1} + 2e^{-2} + 3e^{-3} + \dots + ne^{-n} + \dots$

$$\sum_{n=1}^{\infty} ne^{-n} = e^{-1} + 2e^{-2} + 3e^{-3} + \dots + ne^{-n} + \dots$$

Let $f(x) = xe^{-x} > 0$.

Notice for x > 1, f(x) is continuous and:

$$f'(x) = -xe^{-x} + e^{-x} = (1-x)e^{-x} < 0.$$

Thus $f(x) = xe^{-x}$ is a decreasing function for x > 1. So we can apply the integral test to $\sum_{n=1}^{\infty} ne^{-n}$.

$$\int_{1}^{\infty} x e^{-x} dx = \lim_{b \to \infty} \int_{1}^{b} x e^{-x} dx \qquad \text{(integrate by parts)}$$
$$u = x \qquad v = -e^{-x}$$
$$du = dx \qquad dv = e^{-x} dx$$

$$= \lim_{b \to \infty} [(-xe^{-x})|_{1}^{b} + \int_{1}^{b} e^{-x} dx]$$
$$= \lim_{b \to \infty} [(-\frac{b}{e^{b}} + e^{-1}) - (e^{-x})|_{1}^{b}]$$

$$= \lim_{b \to \infty} \left[\left(-\frac{b}{e^b} + e^{-1} \right) - \left(e^{-b} - e^{-1} \right) \right].$$

1.

 $\lim_{b \to \infty} (-\frac{b}{e^b}) = 0$, by L'Hospital's Rule, so

$$\int_1^\infty x e^{-x} dx = 2e^{-1}.$$

Thus $\sum_{n=1}^{\infty} ne^{-n} = e^{-1} + 2e^{-2} + 3e^{-3} + \dots + ne^{-n} + \dots$ converges by the integral test.

The Comparison Test

Sometimes we can show a positive series converges by showing that its partial sums are always less than another positive series we know converges.

Ex.
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n} \leq \sum_{n=1}^{\infty} \frac{1}{3^n}$$
 which converges since it's a geometric series with $r = \frac{1}{3}$).

Or sometimes we can show a positive series diverges by showing that its partial sums are always greater than another positive series we know diverges.

Ex. $\sum_{n=2}^{\infty} \frac{1}{n-1} \ge \sum_{n=2}^{\infty} \frac{1}{n}$, which diverges because it's the harmonic series.

Comparison Test Theorem: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms

- a. If $\sum_{n=1}^{\infty} b_n$ converges and $a_n \leq b_n$ for all n (or at least from some n onward), then $\sum_{n=1}^{\infty} a_n$ converges.
- b. If $\sum_{n=1}^{\infty} b_n$ diverges and $a_n \ge b_n$ for all n (or at least from some n onward), then $\sum_{n=1}^{\infty} a_n$ diverges.

1. To use the comparison test we must have a set of series we know converge or diverge to use in the test. Frequently the convergent series are geometric series with |r| < 1 or p-series with p > 1. The divergent series are frequently geometric series with $|r| \ge 1$ or p-series with $p \le 1$.

2. Remember, you can only prove a series is convergent by comparing it to a convergent series with terms that are BIGGER than your series. You can only prove a series is divergent by comparing it to a divergent series with terms that are SMALLER than your series.

Ex. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2n + 5}$.

Notice that
$$\frac{1}{3n^2+2n+5} \leq \frac{1}{3n^2}$$
.

$$\sum_{n=1}^{\infty} \frac{1}{3n^2} = \frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges because } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is a } p \text{-series with } p > 1.$$
Thus $\sum_{n=1}^{\infty} \frac{1}{n^2} \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq \infty$ appears by the

Thus, $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2n + 5} \le \sum_{n=1}^{\infty} \frac{1}{3n^2} < \infty$ converges by the comparison test.

Note: If we had $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$, we could <u>NOT</u> use the comparison test with $\sum_{n=2}^{\infty} \frac{1}{n^2}$, which converges, because $\frac{1}{n^2} < \frac{1}{n^2 - 1}$ (i.e., the inequality goes the wrong way). We will see that the Limit Comparison Test will allow us to solve this problem.

Ex. Determine the convergence of $\sum_{n=1}^{\infty} \frac{2+\sin n}{n}$.

Notice that
$$2 + \sin n \ge 1$$
 so $\frac{2 + \sin n}{n} \ge \frac{1}{n}$.

 $\sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges because it's the harmonic series.}$ $\sum_{n=1}^{\infty} \frac{1}{n} \leq \sum_{n=1}^{\infty} \frac{2+\sin n}{n} \text{ so } \sum_{n=1}^{\infty} \frac{2+\sin n}{n} \text{ diverges by the comparison test.}$

Ex. Determine the convergence of $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^{1.01}+1}$.

$$0 \leq \sin^2 n \leq 1 \text{ and } \frac{\sin^2 n}{n^{1.01} + 1} \leq \frac{1}{n^{1.01}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{1.01}} \text{ converges because it's a } p \text{-series with } p > 1.$$
Thus, by the comparison test
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^{1.01} + 1} \leq \sum_{n=1}^{\infty} \frac{1}{n^{1.01}} \text{ converges.}$$

Ex. Determine the convergence of $\sum_{n=3}^{\infty} \frac{1}{(\ln n)(5^n)}$.

$$\frac{1}{\ln n} \leq 1 \text{ if } n \geq 3 \text{, so } \frac{1}{(\ln n)(5^n)} \leq \frac{1}{5^n} \text{ for } n \geq 3.$$

$$\sum_{n=3}^{\infty} \frac{1}{5^n} \text{ converges because it's a geometric series with } -1 < r = \frac{1}{5} < 1.$$
Thus,
$$\sum_{n=3}^{\infty} \frac{1}{(\ln n)(5^n)} \leq \sum_{n=3}^{\infty} \frac{1}{5^n} \text{ converges by the comparison test.}$$

If we had $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$, we could <u>NOT</u> use the comparison test with $\sum_{n=2}^{\infty} \frac{1}{n^2}$, which converges, because $\frac{1}{n^2} < \frac{1}{n^2-1}$ (i.e., the inequality goes the wrong way). But somehow, it seems like the two series should behave the same way.

Limit Comparison Test Theorem: Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where *c* is a finite number, c > 0, then either both series converge of both diverge.

Ex. Determine the convergence of $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$.

Now we can use $\sum_{n=2}^{\infty} \frac{1}{n^2}$ as part of the limit comparison test:

Let
$$a_n = rac{1}{n^2-1}$$
 and $b_n = rac{1}{n^2}$

(it doesn't matter which we made a_n and which we made b_n).

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n^2 - 1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n^2 - 1} = 1.$$

Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges (it's a *p*-series with $p > 1$), $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$ converges by the limit comparison test.

Note: When trying to determine whether a sum where a_n is a positive fraction converges or diverges, just look at the fastest growing terms in the numerator and denominator. For example, $\sum_{n=1}^{\infty} \frac{3n^4 - 2n^2 + 4}{6n^6 + 2n^3 + n}$ will converge or diverge depending on whether $\sum_{n=1}^{\infty} \frac{3n^4}{6n^6} = \sum_{n=1}^{\infty} \frac{1}{2n^2}$ converges (which it does because it's $\frac{1}{2}$ times a *p*-series with p = 2 > 1) or diverges. This is a good way to get a series to use in the limit comparison test.

Ex. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{5n+3}$.

$$\sum_{n=1}^{\infty} \frac{1}{5n} = \frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges since } \sum_{n=1}^{\infty} \frac{1}{n} \text{ is the harmonic series.}$$
$$\lim_{n \to \infty} \frac{\frac{1}{5n+3}}{\frac{1}{5n}} = \lim_{n \to \infty} \frac{5n}{5n+3} = 1, \text{ so } \sum_{n=1}^{\infty} \frac{1}{5n+3} \text{ diverges by the limit comparison test.}$$

Ex. Determine the convergence of $\sum_{n=1}^{\infty} \frac{5n-3}{n^2-2n+5}$.

 $\sum_{n=1}^{\infty} \frac{5n}{n^2} = 5 \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges, just as it did in the previous example.}$ $\lim_{n \to \infty} \frac{\frac{5n-3}{n^2-2n+5}}{\frac{5}{n}} = \lim_{n \to \infty} \left(\frac{5n-3}{n^2-2n+5}\right) \cdot \left(\frac{n}{5}\right) = \lim_{n \to \infty} \left(\frac{5n^2-3n}{n^2-2n+5}\right) \left(\frac{1}{5}\right)$ $= \lim_{n \to \infty} \frac{n^2 \left(5-\frac{3}{n}\right)}{n^2 \left(1-\frac{2}{n}+\frac{5}{n^2}\right)} \left(\frac{1}{5}\right) = 1.$

So by the limit comparison test, $\sum_{n=1}^{\infty} \frac{5n-3}{n^2-2n+5}$ diverges because $\sum_{n=1}^{\infty} \frac{5}{n}$ diverges.

Ex. Determine the convergence of $\sum_{n=2}^{\infty} \frac{2n+3}{\sqrt{n^5-2n^3+7}}$.

The numerator behaves like 2n and the denominator behaves like $\sqrt{n^5} = n^{\frac{5}{2}}$.

Thus,
$$\frac{2n+3}{\sqrt{n^5-2n^3+7}}$$
 should behave like $\frac{2n}{n^{\frac{5}{2}}} = \frac{2}{n^{\frac{3}{2}}}$.

$$\sum_{n=2}^{\infty} \frac{2}{n^{\frac{3}{2}}} = 2 \sum_{n=2}^{\infty} \frac{1}{n^{\frac{3}{2}}} \text{ converges because } \sum_{n=2}^{\infty} \frac{1}{n^{\frac{3}{2}}} \text{ is a } p \text{-series with}$$

$$p = \frac{3}{2} > 1.$$

$$\lim_{n \to \infty} \frac{\frac{2n+3}{\sqrt{n^5 - 2n^3 + 7}}}{\frac{2}{n^2}} = \lim_{n \to \infty} \frac{2n+3}{\sqrt{n^5 - 2n^3 + 7}} \cdot \frac{n^{\frac{3}{2}}}{2}$$
$$= \lim_{n \to \infty} \frac{n^{\frac{5}{2}} \left(2 + \frac{3}{n}\right)}{2n^{\frac{5}{2}} \sqrt{1 - \frac{2}{n^2} + \frac{7}{n^5}}} = 1.$$

So
$$\sum_{n=2}^{\infty} \frac{2n+3}{\sqrt{n^5-2n^3+7}}$$
 converges by the limit comparison test.