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                                       Field Extensions 

 

Def.   A field 𝐸 is an extension field of a field 𝐹 if 𝐹 is a subfield of 𝐸 (𝐹 ≤ 𝐸). 

 

Ex.    ℝ is an extension field of ℚ and ℂ is an extension field of ℝ and ℚ. 

 

Kronecker’s Theorem: Let 𝐹 be a field and let 𝑔(𝑥) be a nonconstant 

 polynomial in 𝐹[𝑥]. Then there exists an extension field 𝐸 of 𝐹 and an 

            𝛼 ∈ 𝐸 such that 𝑔(𝛼) = 0. 

 

Ex.     Let 𝐹 = ℝ and let 𝑔(𝑥) = 𝑥2 + 1.   𝑔(𝑥) has no zeros in ℝ and thus 

 is irreducible over ℝ.  < 𝑥2 + 1 > is a maximal ideal in ℝ[𝑥] so 

 ℝ[𝑥]/< 𝑥2 + 1 >  is a field.  

We can view ℝ as a subfield of ℝ[𝑥]/< 𝑥2 + 1 > through the mapping:  

 

𝜑: ℝ → ℝ[𝑥]/< 𝑥2 + 1 >   by    𝜑(𝑡) = 𝑡+< 𝑥2 + 1 >, 𝑡 ∈ ℝ.  

 

 Let 𝛼 = 𝑥+< 𝑥2 + 1 > ∈ ℝ[𝑥]/< 𝑥2 + 1 >, 

 then  𝛼2 + 1 = (𝑥+< 𝑥2 + 1 >)2 + (1+< 𝑥2 + 1 >)  

                                 = (𝑥2 + 1) + < 𝑥2 + 1 > 

                                 = 0.  

 Thus 𝛼 is a zero of 𝑥2 + 1. So we can think of ℝ[𝑥]/< 𝑥2 + 1 > as 

 an extension field of ℝ, which has an element 𝛼 where 𝛼2 + 1 = 0. 
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Ex.     Let 𝐹 = ℚ and consider 𝑓(𝑥) = 𝑥4 − 7𝑥2 + 10.  

 In ℚ[𝑥], 𝑓(𝑥) = (𝑥2 − 2)(𝑥2 − 5), where 𝑥2 − 2 and 𝑥2 − 5 are 

 irreducible over ℚ. 

 We can construct a field ℚ[𝑥]/ < 𝑥2 − 2 >, which can be thought 

 of as an extension field of ℚ, which has an element 𝛼 such that      

          𝛼2 − 2 = 0 (just let 𝛼 = 𝑥+< 𝑥2 − 2 >). 

 We can also construct an extension field of ℚ, ℚ[𝑥]/ < 𝑥2 − 5 >, 

 which has an element 𝛼 such that 𝛼2 − 5 = 0. 

 

 

Def.   An element 𝛼 of an extension field 𝐸 of a field 𝐹 is algebraic over 𝐹 if 

           𝑓(𝛼) = 0 for some 𝑓(𝑥) = 𝐹[𝑥]. If 𝛼 is not algebraic over 𝐹, then 𝛼 is 

           transcendental over 𝐹. 

 

 

Ex.     ℂ is an extension field of ℚ.  Since √3 is a zero of 𝑥2 − 3, √3 is an 

 algebraic element over ℚ.  Since 𝑖 is a zero of 𝑥2 + 1, 𝑖 is also 

 algebraic over ℚ. 

 

 

Ex.      Although it’s not that easy to prove, 𝜋 and 𝑒 are transcendental 

 numbers over ℚ. 
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Ex.     Notice that 𝜋 and 𝑒 are transcendental over ℚ because there is no 

          polynomial with coefficients in ℚ (or ℤ) such that 𝜋 or 𝑒 is a solution to: 

          𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 = 0;      𝑎𝑖 ∈ ℚ for all 𝑖 = 1, … , 𝑛. 

 However, 𝜋 and 𝑒 are algebraic over ℝ because 𝜋 is a root of  𝑥 − 𝜋 = 0 

          and 𝑒 is a root of 𝑥 − 𝑒 = 0. 

 So whether a number is algebraic or transcendental can depend on which 

            field you are taking it over. 

 

Ex.     Show √1 + √7 is algebraic over ℚ.  

 

 Let 𝛼 = √1 + √7 then: 

𝛼2 = 1 + √7 

𝛼2 − 1 = √7 

(𝛼2 − 1)2 = 7 

𝛼4 − 2𝛼2 + 1 = 7 or  𝛼4 − 2𝛼2 − 6 = 0. 

        So 𝛼 is a zero of 𝑥4 − 2𝑥2 − 6 = 0 in ℚ[𝑥] and 𝛼 is algebraic over ℚ. 

 

Theorem:  Let 𝐸 be an extension field of 𝐹, and 𝛼 ∈ 𝐸, with 𝛼    

        algebraic over 𝐹. Then there is an irreducible polynomial  

        𝑓(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝛼) = 0.  𝑓(𝑥)  is uniquely determined up 

                    to a constant factor in 𝐹 and is a polynomial of minimal degree ≥ 1 in 

                 𝐹[𝑥] having 𝛼 as a  zero. If 𝑔(𝛼) = 0 for 𝑔(𝑥) ∈ 𝐹[𝑥], with 

                 𝑔(𝑥) ≠ 0, then 𝑓(𝑥) divides 𝑔(𝑥). 
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Ex.     𝑥2 − 2 = 0, 3𝑥2 − 6 = 0, and 𝑥3 − 2𝑥 = 0 all have √2 as a zero. 

 Notice that 3𝑥2 − 6 = 3(𝑥2 − 2) and 𝑥3 − 2𝑥 = 𝑥(𝑥2 − 2). 

 𝑥2 − 2 and 3𝑥2 − 6 are irreducible in ℚ[𝑥] where 𝑥3 − 2𝑥 is not. 

 

Def.  Let 𝐸 be an extension field of a field 𝐹, and let 𝛼 ∈ 𝐸 be algebraic over 𝐹. 

        The unique monic polynomial (coefficient of the highest power is 1) 𝑝(𝑥), 

        where 𝑝(𝛼) = 0 and 𝑝(𝑥) is irreducible over 𝐹, is the irreducible     

          polynomial for 𝛼 over 𝐹 and will be denoted 𝒊𝒓𝒓(𝜶, 𝑭). The degree of 

         𝑖𝑟𝑟(𝛼, 𝐹) is the degree of 𝛼 over 𝐹, denoted by 𝒅𝒆𝒈(𝜶, 𝑭). 

 

Ex.    We saw that 𝛼 = √1 + √7 is a zero of 𝑥4 − 2𝑥2 − 6 in ℚ[𝑥]. 

𝑥4 − 2𝑥2 − 6 is irreducible over ℚ by Eisenstein’s criterion with 𝑝 = 2 
since: 

                        𝑎𝑛 = 1 ≢ 0 (𝑚𝑜𝑑 2),        −2 ≡ 0 (𝑚𝑜𝑑 2) 

              −6 ≡ 0 (𝑚𝑜𝑑 2)    and       −6 ≢ 0 (𝑚𝑜𝑑(22)). 

The leading coefficient is 1 so 𝑖𝑟𝑟 (√1 + √7, ℚ) = 𝑥4 − 2𝑥2 − 6, and  

deg ((√1 + √7) , ℚ) = 4. 

 

Ex.    When we talk about the degree of an algebraic number, we must 

 specify which field we are talking about. For example, for 𝛼 = √3: 

   𝑖𝑟𝑟(√3, ℚ) = 𝑥2 − 3     so   𝑑𝑒𝑔(√3, ℚ) = 2, 

                        but 𝑖𝑟𝑟(√3, ℝ) = 𝑥 − √3    so    𝑑𝑒𝑔(√3, ℝ) = 1. 
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Ex.   Find 𝑖𝑟𝑟(𝛼, ℚ) and 𝑑𝑒𝑔(𝛼, ℚ) for 𝛼 = √3 + 𝑖.   

 

                                             𝛼2 = 3 + 𝑖 

                                     𝛼2 − 3 = 𝑖 

                               (𝛼2 − 3)2 = 𝑖2 = −1 

                        𝛼4 − 6𝛼2 + 9 = −1 

                      𝛼4 − 6𝛼2 + 10 = 0. 

 So 𝛼 satisfies 𝑥4 − 6𝑥2 + 10 = 0.  

 

 𝑥4 − 6𝑥2 + 10 = 0 is irreducible over ℚ by Eisenstein’s criterion 

 with 𝑝 = 2 since:   𝑎4 = 1 ≢ 0 (𝑚𝑜𝑑 2) ,    − 6 ≡ 0 (𝑚𝑜𝑑 2), and  

                                10 ≡ 0 (𝑚𝑜𝑑 2),    But       10 ≢ 0 (𝑚𝑜𝑑 22).   So: 

𝑖𝑟𝑟(𝛼, ℚ) = 𝑥4 − 6𝑥2 + 10,        𝑑𝑒𝑔(𝛼, ℚ) = 4. 

 

Def.  Suppose 𝛼 is algebraic over 𝐹 then < 𝑖𝑟𝑟(𝛼, 𝐹) > is a maximal ideal of 

         𝐹[𝑥]. Therefore, 𝐹[𝑥]/< 𝑖𝑟𝑟(𝛼, 𝐹) > is a field and is isomorphic to the 

         image 𝜙𝛼[𝐹[𝑥]], where 𝜙𝛼  is the evaluation homomorphism. We call this 

         field 𝑭(𝜶). 

 

Def.    An extension field 𝐸 of a field 𝐹 is a simple extension of 𝐹 if 𝐸 = 𝐹(𝛼) 

 for some 𝛼 ∈ 𝐸. 
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Theorem:  Let 𝐸 be a simple extension 𝐹(𝛼) of a field 𝐹, and let 𝛼 be   

 algebraic over 𝐹. Let the degree of 𝑖𝑟𝑟(𝛼, 𝐹) be 𝑛 ≥ 1. Then   

 every element 𝛾 of 𝐸 = 𝐹(𝛼) can be uniquely expressed in   

 the form: 

𝛾 = 𝑐0 + 𝑐1𝛼 + ⋯ + 𝑐𝑛−1𝛼𝑛−1 where 𝑐𝑖 are in 𝐹.  

 

Ex.     𝑓(𝑥) = 𝑥2 + 𝑥 + 1 in ℤ2[𝑥] is irreducible over ℤ2 because it is 

 degree 2 and has no zero in ℤ2 since: 

𝑓(0) = 1 and 𝑓(1) ≡ 1(𝑚𝑜𝑑 2). 

 By Kronecker’s Theorem there exists an extension field 𝐸 on ℤ2, which has 

            a zero of 𝑥2 + 𝑥 + 1. By our previous theorem, elements of 𝐸 = ℤ2(𝛼) 

          are of the form: 

𝑎1𝛼 + 𝑎0   where    𝑎0, 𝑎1 ∈ ℤ2. 

 So the elements of 𝐸 = ℤ2(𝛼) are: 

0 + 0𝛼 = 0,    1 + 0𝛼 = 1,    0 + 1𝛼 = 𝛼,    and  1 + 𝛼. 

 Thus 𝐸 = ℤ2(𝛼) is a finite field with 4 elements. 

  

How do we add or multiply these elements? We need to use the fact that 

           𝛼2 + 𝛼 + 1 = 0 to do this. In ℤ2 we have: 

𝛼2 = −𝛼 − 1 = 𝛼 + 1. 

  

So, for example, if we want to multiply:  

(𝛼)(1 + 𝛼) = 𝛼 + 𝛼2 = 𝛼 + 𝛼 + 1 = 1. 
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 So let’s fill in the addition and multiplication tables for ℤ2(𝛼): 

 

+ 0 1 𝜶 𝟏 + 𝜶  ∙ 𝟎 𝟏 𝜶 𝟏 + 𝜶 

𝟎 0 1 𝛼 1 + 𝛼 0 0 0 0 0 
𝟏 1 0 1 + 𝛼 𝛼 1 0 1 𝛼 1 + 𝛼 
𝜶 𝛼 1 + 𝛼 0 1 𝛼 0 𝛼 1 + 𝛼 1 

𝟏 + 𝜶 1 + 𝛼 𝛼 1 0 1 + 𝛼 0 1 + 𝛼 1 𝛼 

  

 

Finally, let’s show that ℝ[𝑥]/ < 𝑥2 + 1 >≅ ℂ: 

ℝ[𝛼] = ℝ[𝑥]/ < 𝑥2 + 1 > where elements of ℝ(𝛼) are of the form: 

                         𝑎0 + 𝑎1𝛼;    𝑎0, 𝑎1 ∈ ℝ   where 𝛼2 = −1.                                          

          We usually call 𝛼,    𝑖 = √−1.   

 

So ℝ(𝛼) = ℝ[𝑥]/< 𝑥2 + 1 > = {𝑎0 + 𝑎1𝛼| 𝑎0, 𝑎1 ∈ ℝ,   𝛼2 = −1}  

 ≅ {𝑎 + 𝑏𝑖| 𝑎, 𝑏 ∈ ℝ, 𝑖 = √−1} = ℂ. 

 

 


