Field Extensions

Def. A field *E* is an **extension field** of a field *F* if *F* is a subfield of *E* ($F \le E$).

- Ex. \mathbb{R} is an extension field of \mathbb{Q} and \mathbb{C} is an extension field of \mathbb{R} and \mathbb{Q} .
- Kronecker's Theorem: Let F be a field and let g(x) be a nonconstant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $g(\alpha) = 0$.
- Ex. Let $F = \mathbb{R}$ and let $g(x) = x^2 + 1$. g(x) has no zeros in \mathbb{R} and thus is irreducible over \mathbb{R} . $\langle x^2 + 1 \rangle$ is a maximal ideal in $\mathbb{R}[x]$ so $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ is a field.

We can view \mathbb{R} as a subfield of $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ through the mapping:

$$\varphi \colon \mathbb{R} \to \mathbb{R}[x] / \langle x^2 + 1 \rangle$$
 by $\varphi(t) = t + \langle x^2 + 1 \rangle$, $t \in \mathbb{R}$.

Let
$$\alpha = x + \langle x^2 + 1 \rangle \in \mathbb{R}[x] / \langle x^2 + 1 \rangle$$
,
then $\alpha^2 + 1 = (x + \langle x^2 + 1 \rangle)^2 + (1 + \langle x^2 + 1 \rangle)$
 $= (x^2 + 1) + \langle x^2 + 1 \rangle$
 $= 0.$

Thus α is a zero of $x^2 + 1$. So we can think of $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ as an extension field of \mathbb{R} , which has an element α where $\alpha^2 + 1 = 0$.

Ex. Let $F = \mathbb{Q}$ and consider $f(x) = x^4 - 7x^2 + 10$. In $\mathbb{Q}[x]$, $f(x) = (x^2 - 2)(x^2 - 5)$, where $x^2 - 2$ and $x^2 - 5$ are irreducible over \mathbb{Q} .

We can construct a field $\mathbb{Q}[x]/\langle x^2-2\rangle$, which can be thought of as an extension field of \mathbb{Q} , which has an element α such that $\alpha^2 - 2 = 0$ (just let $\alpha = x + \langle x^2 - 2 \rangle$).

We can also construct an extension field of \mathbb{Q} , $\mathbb{Q}[x]/\langle x^2-5\rangle$, which has an element α such that $\alpha^2-5=0$.

- Def. An element α of an extension field E of a field F is **algebraic** over F if $f(\alpha) = 0$ for some f(x) = F[x]. If α is not algebraic over F, then α is **transcendental** over F.
- Ex. \mathbb{C} is an extension field of \mathbb{Q} . Since $\sqrt{3}$ is a zero of $x^2 3$, $\sqrt{3}$ is an algebraic element over \mathbb{Q} . Since i is a zero of $x^2 + 1$, i is also algebraic over \mathbb{Q} .
- Ex. Although it's not that easy to prove, π and e are transcendental numbers over \mathbb{Q} .

Ex. Notice that π and e are transcendental over \mathbb{Q} because there is no polynomial with coefficients in \mathbb{Q} (or \mathbb{Z}) such that π or e is a solution to:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0;$$
 $a_i \in \mathbb{Q}$ for all $i = 1, \dots, n$.

However, π and e are algebraic over \mathbb{R} because π is a root of $x - \pi = 0$ and e is a root of x - e = 0.

So whether a number is algebraic or transcendental can depend on which field you are taking it over.

Ex. Show $\sqrt{1 + \sqrt{7}}$ is algebraic over \mathbb{Q} .

Let $\alpha = \sqrt{1 + \sqrt{7}}$ then:

$$\alpha^{2} = 1 + \sqrt{7}$$

$$\alpha^{2} - 1 = \sqrt{7}$$

$$(\alpha^{2} - 1)^{2} = 7$$

$$\alpha^{4} - 2\alpha^{2} + 1 = 7 \text{ or } \alpha^{4} - 2\alpha^{2} - 6 = 0.$$

So α is a zero of $x^4 - 2x^2 - 6 = 0$ in $\mathbb{Q}[x]$ and α is algebraic over \mathbb{Q} .

Theorem: Let *E* be an extension field of *F*, and $\alpha \in E$, with α algebraic over *F*. Then there is an irreducible polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. f(x) is uniquely determined up to a constant factor in *F* and is a polynomial of minimal degree ≥ 1 in F[x] having α as a zero. If $g(\alpha) = 0$ for $g(x) \in F[x]$, with $g(x) \neq 0$, then f(x) divides g(x).

Ex.
$$x^2 - 2 = 0$$
, $3x^2 - 6 = 0$, and $x^3 - 2x = 0$ all have $\sqrt{2}$ as a zero.
Notice that $3x^2 - 6 = 3(x^2 - 2)$ and $x^3 - 2x = x(x^2 - 2)$.
 $x^2 - 2$ and $3x^2 - 6$ are irreducible in $\mathbb{Q}[x]$ where $x^3 - 2x$ is not.

- Def. Let *E* be an extension field of a field *F*, and let $\alpha \in E$ be algebraic over *F*. The unique **monic** polynomial (coefficient of the highest power is 1) p(x), where $p(\alpha) = 0$ and p(x) is irreducible over *F*, is the irreducible polynomial for α over *F* and will be denoted $irr(\alpha, F)$. The degree of $irr(\alpha, F)$ is the degree of α over *F*, denoted by $deg(\alpha, F)$.
- Ex. We saw that $\alpha = \sqrt{1 + \sqrt{7}}$ is a zero of $x^4 2x^2 6$ in $\mathbb{Q}[x]$. $x^4 - 2x^2 - 6$ is irreducible over \mathbb{Q} by Eisenstein's criterion with p = 2 since:

$$a_n = 1 \not\equiv 0 \pmod{2}, \quad -2 \equiv 0 \pmod{2}$$
$$-6 \equiv 0 \pmod{2} \text{ and } -6 \not\equiv 0 \pmod{2^2}.$$
The leading coefficient is 1 so $irr\left(\sqrt{1+\sqrt{7}}, \mathbb{Q}\right) = x^4 - 2x^2 - 6$, and $deg\left(\left(\sqrt{1+\sqrt{7}}\right), \mathbb{Q}\right) = 4.$

Ex. When we talk about the degree of an algebraic number, we must specify which field we are talking about. For example, for $\alpha = \sqrt{3}$:

$$irr(\sqrt{3}, \mathbb{Q}) = x^2 - 3$$
 so $deg(\sqrt{3}, \mathbb{Q}) = 2$,
but $irr(\sqrt{3}, \mathbb{R}) = x - \sqrt{3}$ so $deg(\sqrt{3}, \mathbb{R}) = 1$.

Ex. Find $irr(\alpha, \mathbb{Q})$ and $deg(\alpha, \mathbb{Q})$ for $\alpha = \sqrt{3+i}$.

$$\alpha^{2} = 3 + i$$

$$\alpha^{2} - 3 = i$$

$$(\alpha^{2} - 3)^{2} = i^{2} = -1$$

$$\alpha^{4} - 6\alpha^{2} + 9 = -1$$

$$\alpha^{4} - 6\alpha^{2} + 10 = 0.$$

So α satisfies $x^4 - 6x^2 + 10 = 0$.

 $\begin{aligned} x^4 - 6x^2 + 10 &= 0 \text{ is irreducible over } \mathbb{Q} \text{ by Eisenstein's criterion} \\ \text{with } p &= 2 \text{ since: } a_4 = 1 \not\equiv 0 \pmod{2}, \quad -6 \equiv 0 \pmod{2}, \text{ and} \\ 10 &\equiv 0 \pmod{2}, \quad \text{But} \quad 10 \not\equiv 0 \pmod{2^2}. \quad \text{So:} \\ irr(\alpha, \mathbb{Q}) &= x^4 - 6x^2 + 10, \quad deg(\alpha, \mathbb{Q}) = 4. \end{aligned}$

- Def. Suppose α is algebraic over F then $\langle irr(\alpha, F) \rangle$ is a maximal ideal of F[x]. Therefore, $F[x]/\langle irr(\alpha, F) \rangle$ is a field and is isomorphic to the image $\phi_{\alpha}[F[x]]$, where ϕ_{α} is the evaluation homomorphism. We call this field $F(\alpha)$.
- Def. An extension field *E* of a field *F* is a **simple extension** of *F* if $E = F(\alpha)$ for some $\alpha \in E$.

Theorem: Let *E* be a simple extension $F(\alpha)$ of a field *F*, and let α be algebraic over *F*. Let the degree of $irr(\alpha, F)$ be $n \ge 1$. Then every element γ of $E = F(\alpha)$ can be uniquely expressed in the form:

$$\gamma = c_0 + c_1 lpha + \dots + c_{n-1} lpha^{n-1}$$
 where c_i are in F_i

Ex. $f(x) = x^2 + x + 1$ in $\mathbb{Z}_2[x]$ is irreducible over \mathbb{Z}_2 because it is degree 2 and has no zero in \mathbb{Z}_2 since:

$$f(0) = 1$$
 and $f(1) \equiv 1 \pmod{2}$.

By Kronecker's Theorem there exists an extension field E on \mathbb{Z}_2 , which has a zero of $x^2 + x + 1$. By our previous theorem, elements of $E = \mathbb{Z}_2(\alpha)$ are of the form:

$$a_1 \alpha + a_0$$
 where $a_0, a_1 \in \mathbb{Z}_2$.

So the elements of $E = \mathbb{Z}_2(\alpha)$ are:

$$0 + 0\alpha = 0$$
, $1 + 0\alpha = 1$, $0 + 1\alpha = \alpha$, and $1 + \alpha$.

Thus $E = \mathbb{Z}_2(\alpha)$ is a finite field with 4 elements.

How do we add or multiply these elements? We need to use the fact that $\alpha^2 + \alpha + 1 = 0$ to do this. In \mathbb{Z}_2 we have:

$$\alpha^2 = -\alpha - 1 = \alpha + 1.$$

So, for example, if we want to multiply:

$$(\alpha)(1+\alpha) = \alpha + \alpha^2 = \alpha + \alpha + 1 = 1.$$

Collet's fill in the addition and multiplication to bloc for $\overline{\mathcal{T}}$	(α)
So let's fill in the addition and multiplication tables for \mathbb{Z}_2	(u).

+	0	1	α	$1 + \alpha$	•	0	1	α	$1 + \alpha$
0	0	1	α	$1 + \alpha$	0	0	0	0	0
1	1	0	$1 + \alpha$	α	1	0	1	α	$1 + \alpha$
α	α	$1 + \alpha$	0	1	α	0	α	$1 + \alpha$	1
$1 + \alpha$	$1 + \alpha$	α	1	0	$1 + \alpha$	0	$1 + \alpha$	1	α

Finally, let's show that $\mathbb{R}[x] / \langle x^2 + 1 \rangle \cong \mathbb{C}$:

$$\begin{split} \mathbb{R}[\alpha] &= \mathbb{R}[x] / < x^2 + 1 > \text{where elements of } \mathbb{R}(\alpha) \text{ are of the form:} \\ a_0 + a_1 \alpha; \quad a_0, a_1 \in \mathbb{R} \quad \text{where } \alpha^2 = -1. \end{split} \\ \text{We usually call } \alpha, \quad i = \sqrt{-1}. \end{split}$$

So
$$\mathbb{R}(\alpha) = \mathbb{R}[x] / \langle x^2 + 1 \rangle = \{a_0 + a_1 \alpha | a_0, a_1 \in \mathbb{R}, \ \alpha^2 = -1\}$$

 $\cong \{a + bi | a, b \in \mathbb{R}, \ i = \sqrt{-1}\} = \mathbb{C}.$