Def. Let V be a vector space (over \mathbb{R}). An **inner product** on V is a function that assigns to every pair of vectors $v, w \in V$ a real number $\langle v, w \rangle$ such that for all $u, v, w \in V$ and $c \in \mathbb{R}$ the following hold:

- a. $\langle v + u, w \rangle = \langle v, w \rangle + \langle u, w \rangle$
- b. $< cv, w> = c < v, w>$
- c. $< v, w > = < w, v >$
- d. $\langle v, v \rangle > 0$ if $v \neq 0$.

A vector space V with an inner product, \lt , $>$, is called an **inner product space.**

Ex. Let $v, w \in \mathbb{R}^n$ be given by $v = $a_1, ..., a_n >$, $w = $b_1, ..., b_n >$ in the$$ standard ordered basis for \mathbb{R}^n . Then define

$$
\langle v, w \rangle = \sum_{i=1}^n a_i b_i = a_1 b_1 + \dots + a_n b_n.
$$

This is the **standard inner product on** \mathbb{R}^n .

Notice that this inner product satisfies conditions a-d above. For example:

Let
$$
u = < d_1, ..., d_n
$$
 > then
\n $< v + u, w > = \ll (a_1 + d_1), ..., (a_n + d_n) >, < b_1, ..., b_n >>$
\n $= \sum_{i=1}^n (a_i + d_i) b_i$
\n $= \sum_{i=1}^n (a_i b_i + d_i b_i)$
\n $= \sum_{i=1}^n a_i b_i + \sum_{i=1}^n d_i b_i$
\n $= < v, w > + < u, w >.$

Ex. Let $V = C[0,1] = \{$ Continuous real valued functions on [0,1] $\}$. We can define an inner product on $C[0,1]$ by

$$
\langle f, g \rangle = \int_0^1 f(x)g(x)dx.
$$

Standard properties of Riemann integrals allow us to verify conditions a-d.

Theorem: Let V be an inner product space. For $u, v, w \in V$ and $c \in \mathbb{R}$ we have

- i. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- ii. $\langle u, cv \rangle = c \langle u, v \rangle$
- iii. $\langle u, 0 \rangle = \langle 0, u \rangle = 0$
- iv. $\langle u, u \rangle = 0$ if and only if $u = 0$.
- v. If $\langle u, v \rangle = \langle u, w \rangle$ for all $u \in V$ then $v = w$.

Proof of i. and v.:

i.
$$
\langle u, v + w \rangle = \langle v + w, u \rangle
$$
 by property c. \n \Rightarrow $\langle v, u \rangle$ + $\langle w, u \rangle$ by property a. \n \Rightarrow $u, v \rangle$ + $\langle u, u \rangle$ by property a. \n \Rightarrow $\langle u, v \rangle$ + $\langle u, w \rangle$ by property c.

v. Suppose $\lt u$, $v \gt \lt \lt u$, $w \gt$ for all $u \in V$ then

$$
\langle u, v \rangle -\langle u, w \rangle = 0
$$

$$
\langle u, v \rangle +\langle u, -w \rangle = 0
$$
 by property ii.

$$
\langle u, v - w \rangle = 0
$$
 by property i.

The last line is true for all $u \in V$, so in particular $u = v - w$.

$$
\langle v - w, v - w \rangle = 0 \implies v - w = 0
$$
 by iv.

So $v = w$.

Def. A vector space V is called a **normed linear space** if given any $v \in V$ there is a real number, $||v||$, called the **norm** of v , with the following properties:

- a. $||v|| \ge 0$, and $||v|| = 0$ if and only if $v = 0$.
- b. $||cv|| = |c|| ||v||$ for all $c \in \mathbb{R}$.
- c. $||v + w|| \le ||v|| + ||w||$, for all $v, w \in V$.

Def. Let V be an inner product space. For $v \in V$, define the **norm or length** of v by $||v|| = \sqrt{\langle v, v \rangle}$.

We will see shortly that this definition of $||v||$ for an inner product space has the three properties of a norm defined above.

Ex. Let $V = \mathbb{R}^n$. If $v = $>$ in the standard ordered basis for \mathbb{R}^n then$

$$
||v|| = \sqrt{\langle v, v \rangle} = \sqrt{v \cdot v} = \sqrt{v_1^2 + \dots + v_n^2}
$$

$$
= [\sum_{i=1}^n a_i^2]^{\frac{1}{2}}.
$$

This is the **standard norm on** \mathbb{R}^n which is just the Euclidean distance between $(a_1, ..., a_n)$ and $(0, ..., 0)$.

Ex. Let $C[0,1]$ be an inner product space with

$$
\langle f, g \rangle = \int_0^1 f(x)g(x)dx; \quad f, g \in C[0,1].
$$

Let $f(x) = x$ and $g(x) = 3x - 2$. Find $||f||$ and show that $\langle f, g \rangle = 0$.

$$
||f|| = \sqrt{\langle f, f \rangle} = (\int_0^1 (x)(x) dx)^{\frac{1}{2}}
$$

= $(\int_0^1 x^2 dx)^{\frac{1}{2}}$
= $(\frac{x^3}{3}|\frac{1}{0})^{\frac{1}{2}} = \sqrt{\frac{1}{3}}.$

$$
\langle f, g \rangle = \int_0^1 f(x)g(x)dx = \int_0^1 x(3x - 2)dx
$$

$$
= \int_0^1 (3x^2 - 2x)dx
$$

$$
= (x^3 - x^2)\Big|_0^1
$$

$$
= (1 - 1) = 0.
$$

Theorem: Let V be an inner product space over $\mathbb R$. Then for all $u, v \in V$ and $c \in \mathbb{R}$ we have:

- a. $\|cv\| = |c| \|v\|$
- b. $||v|| = 0$ if and only if $v = 0$ and $||v|| \ge 0$.
- c. $| \langle v, w \rangle | \le ||v|| ||w||$. This called the Cauchy-Schwarz inequality.
- d. $||v + w|| \le ||v|| + ||w||$. This is called the triangle inequality.

Proof:

a.
$$
||cv|| = \sqrt{}
$$

= $\sqrt{c^2 < v, v>}$
= $|c|\sqrt{} = |c| ||v||$

b.
$$
||v|| = 0 \Leftrightarrow
$$
 (if and only if) $\sqrt{< v, v> = 0}$
 $\Leftrightarrow < v, v> = 0$
 $\Leftrightarrow v = 0.$

In addition, $||v|| = \sqrt{\langle v, v \rangle} \ge 0$, because $\langle v, v \rangle \ge 0$.

c. For all $v, w \in V$ and $c \in \mathbb{R}$ we have

$$
0 \le ||v - cw||^2 = < v - cw, v - cw >
$$

=< v, v > -2c < v, w > +c² < w, w >.

In particular this is true for $c = \frac{< v, w>}{< ... , ...}$ $\frac{*v*,*w*}{*w*,*w*>}$, assuming *.*

$$
0 \le < v, \ v > -2 \frac{< v, w>}{< w, w> + \left(\frac{< v, w>}{< w, w>}\right)^2 < w, \ w >.
$$
\n
$$
= < v, \ v > -\frac{(< v, w>)^2}{< w, w>}\n\Rightarrow \quad \frac{(< v, w>)^2}{< w, w>} \le < v, \ v >.
$$
\n
$$
(< v, \ w >)^2 \le < v, \ v > < w, \ w > = \|v\|^2 \|w\|^2
$$
\n
$$
|< v, \ w >| \le \|v\| \|w\|.
$$

If $w = 0$ then $0 = \vert \langle v, w \rangle \vert \le \Vert v \Vert \Vert w \Vert = \Vert v \Vert (0) = 0.$

d.
$$
||v + w||^2 = < v + w, v + w>
$$

\n $= < v, v > +2 < v, w > + < w, w >$
\n $= ||v||^2 + 2 < v, w > + ||w||^2$
\n $\le ||v||^2 + 2| < v, w > | + ||w||^2$
\n $\le ||v||^2 + 2||v|| ||w|| + ||w||^2$ by part c.
\n $= (||v|| + ||w||)^2$

 \Rightarrow $||v + w|| \le ||v|| + ||w||.$

Properties a,b, and d show that $||v|| = \sqrt{\langle v, v \rangle}$ defines a norm on V.

Ex. What do the Cauchy-Schwarz inequality and the triangle inequality say for

- a. \mathbb{R}^n with the standard inner product?
- b. $C[0,1]$ with the inner product $\langle f, g \rangle = \int_0^1 f(x) g(x) dx$. 0
- a. Let $v =$, $w =$ in \mathbb{R}^n .

The Cauchy Schwarz inequality says:

$$
| < v, w > | \leq ||v|| ||w||.
$$
\n
$$
|\sum_{i=1}^{n} a_i b_i| \leq \left(\sum_{i=1}^{n} a_i^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} b_i^2 \right)^{\frac{1}{2}}.
$$

The triangle inequality says:

$$
||v + w|| \le ||v|| + ||w||.
$$

$$
[\sum_{i=1}^{n} (a_i + b_i)^2]^{\frac{1}{2}} \le [\sum_{i=1}^{n} a_i^2]^{\frac{1}{2}} + [\sum_{i=1}^{n} b_i^2]^{\frac{1}{2}}.
$$

b. For f , $g \in C[0,1]$ we have:

the Cauchy-Schwarz inequality: $| \langle f, g \rangle | \le ||f|| ||g||.$

$$
\begin{aligned} |\int_0^1 f(x)g(x)dx| &\le \left(\int_0^1 f(x)f(x)dx\right)^{\frac{1}{2}} \left(\int_0^1 g(x)g(x)dx\right)^{\frac{1}{2}} \\ &= \left(\int_0^1 f(x)^2 dx\right)^{\frac{1}{2}} \left(\int_0^1 g(x)^2 dx\right)^{\frac{1}{2}} .\end{aligned}
$$

The triangle inequality: $||f + g|| \le ||f|| + ||g||.$

$$
\left(\int_0^1 \left(f(x) + g(x)\right)^2 dx\right)^{\frac{1}{2}} \le \left(\int_0^1 f(x)^2 dx\right)^{\frac{1}{2}} + \left(\int_0^1 g(x)^2 dx\right)^{\frac{1}{2}}.
$$

Ex. Show that $||v|| = \sum_{i=1}^{n} |x_i|$ $\sum_{i=1}^n |x_i|$, where $v = < x_1, ..., x_n >$ is a norm on \mathbb{R}^n , but $||v|| = \sum_{i=1}^{n} |x_i|^2$ $\sum_{i=1}^n |x_i|^2$ is not a norm.

$$
||v|| = \sum_{i=1}^n |x_i| :
$$

- a. $||v|| = \sum_{i=1}^{n} |x_i| \ge 0$ since $|x_i| \ge 0$ for all $i = 1, ..., n$. $||v|| = 0$ if and only if $v = 0$, since $||v|| = \sum_{i=1}^{n} |x_i| = 0 \iff |x_i| = 0$ for $i = 1, ..., n$.
- b. $||cv|| = \sum_{i=1}^{n}$ $\sum_{i=1}^{n} |cx_i| = \sum_{i=1}^{n} |c| |x_i| = |c| ||v||$ $\binom{n}{i-1} |c| |x_i| = |c| ||v||$ for all $c \in \mathbb{R}$.
- c. $||v + w|| = \sum_{i=1}^{n} |x_i + y_i| \leq \sum_{i=1}^{n} (|x_i| + |y_i|) = ||v|| + ||w||.$

 $||v|| = \sum_{i=1}^{n} |x_i|^2$ $\binom{n}{i=1}$ $|x_i|^2$; fails b and c:

- b. $||cv|| = \sum_{i=1}^{n} |cx_i|^2 = \sum_{i=1}^{n} |c|^2 |x_i|^2 = |c|^2$ $\sum_{i=1}^{n} |cx_i|^2 = \sum_{i=1}^{n} |c|^2 |x_i|^2 = |c|^2 ||v||$ $\sum_{i=1}^n |cx_i|^2 = \sum_{i=1}^n |c|^2 |x_i|^2 = |c|^2 ||v||;$ if $|c| \neq 1$ then $||cv|| \neq |c| ||v||$.
- c. Let $\nu = w = 1, 1 >$, then $||\nu + w|| = 2^2 + 2^2 = 8$, $||v|| + ||w|| = 2 + 2 = 4$, and $||v + w|| \nleq ||v|| + ||w||$.

Theorem: Let v and w be non-zero vectors in \mathbb{R}^n and θ the angle between them. Then:

 $< v, w> = v \cdot w = ||v|| ||w|| \cos \theta.$

By the law of cosines:

 $|| v - w ||^2 = || v ||^2 + || w ||^2 - 2 || v || || w || \cos \theta$

Rearranging the terms we get:

2 ||v|| ||w|| cos $\theta = ||v||^2 + ||w||^2 - ||v - w||^2$.

 $||v|| \, ||w|| \cos \theta = \frac{1}{2}$ $\frac{1}{2}(\|\nu\|^2 + \|\nu\|^2 - \|\nu - \nu\|^2)$

$$
=\frac{1}{2}(v\cdot v+w\cdot w-(v-w)\cdot (v-w))
$$

$$
= \frac{1}{2}(\nu \cdot \nu + w \cdot w - (\nu \cdot \nu - w \cdot \nu - \nu \cdot w + w \cdot w))
$$

$$
=\tfrac{1}{2}(2v\cdot w).
$$

 $\|v\|$ $\|w\|$ cos $\theta = v \cdot w$.

Notice this means that given 2 nonzero vectors $v, w \in \mathbb{R}^n$ that v and w are perpendicular if and only if $\langle v, w \rangle = v \cdot w = 0$.

We can use this formula to find the angle between 2 vectors.

Ex. Find the angle between $v = 2, 0 >$ and $w = 3, 3 >$.

$$
\cos \theta = \frac{v \cdot w}{\|v\| \|w\|} = \frac{2}{(\sqrt{2^2 + 0^2})(\sqrt{3^2 + 3^2})}
$$

$$
\cos \theta = \frac{6}{2\sqrt{18}} = \frac{6}{6\sqrt{2}} = \frac{\sqrt{2}}{2}
$$

$$
\theta=\frac{\pi}{4}.
$$

Def. Let V be an inner product space . Vectors v, w are **orthogonal** (or **perpendicular**) if $\langle v, w \rangle = 0$. A subset S of V is said to be **orthogonal** if any two distinct vectors of S are orthogonal.

Def. A vector $v \in V$ is a **unit vector** if $||v|| = 1$.

Def. A subset S of V is called **orthonormal** if S is orthogonal and contains only unit vectors.

Notice that given any nonzero vector $v \in V$ we can create a unit vector in the same direction as v by $u = \frac{v}{\ln a}$ $\frac{\nu}{\|v\|}$.

- Ex. Let $v_1 = 1, 2, 2 >$, $v_2 = 0, -1, 1 >$, and $v_3 = 1, 1, 1 > 0$ be vectors in \mathbb{R}^3 with the standard inner product. Show that $S = \{v_1, v_2, v_3\}$ is orthogonal. Find vectors $S' = \{u_1, u_2, u_3\}$ that are orthonormal.
	- $\langle v_1, v_2 \rangle = \langle 1, 2, 2 \rangle \langle 0, -1, 1 \rangle = 0 2 + 2 = 0$ $< v_2, v_3 > = < 0, -1, 1 > < -4, 1, 1 > = 0 - 1 + 1 = 0$ $< v_3, v_1 > = < -4.1.1 > v < 1.2.2 > = -4 + 2 + 2 = 0.$ Thus S is orthogonal.

However S is not orthonormal since:

$$
||v_1|| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3 \neq 1
$$

\n
$$
||v_2|| = \sqrt{0^2 + (-1)^2 + 1^2} = \sqrt{2} \neq 1
$$

\n
$$
||v_3|| = \sqrt{(-4)^2 + 1^2 + 1^2} = \sqrt{18} \neq 1.
$$

However, if $u_1 = \frac{1}{3}$ $\frac{1}{3}$ < 1,2,2 >, $u_2 = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ < 0, -1,1 >, $u_3 = \frac{1}{\sqrt{1}}$ $\frac{1}{\sqrt{18}}$ < -4,1,1 > then $S' = \{u_1, u_2, u_3\}$ is orthonormal.