Double Integrals Over a Rectangle
Recall for 1 variable: y = f(x)

y=f(x)

b—a
— = Ax

[0 F@)dx = lim ¥, £(x;) Ax

where x; = a + iAx

‘_
a X1 X X3 Xn=D>

f;f(x) dx = area under the curveif f(x) = 0.

Fundamental Theorem of Calculus:

[ f(x) dx = F(b) — F(a) it F'(x) = f(x).

For functions of 2 variables we start with a closed rectangle, R:
R =[a,b] X [c,d] ={(x,y) ER*|la<x < b,c<y<d}

First, let’s assume f(x,y) = 0
Let S be the solid that lies above R and under the
1 4 graphofz = f(x,y).

S={xy,2)|0=<z=<f(xy); (x,y) €R}
e We want to find the volume of S.




First we partition R into subrectangles. We do this by dividing up the intervals

[a, b] and [c, d].
Aa=x3<x <X << x5 < <x,=b

C=Yo <Y1 <Y <<y < <ym=d

'R
d= Ym
Yj
‘(xfiy;)
Vi \
¢ = yO \
a = X, X1 Xi b=xy,

Rij = [xi—y, %] X |yi—n, v = {G )| xics < x < x, yj1 <y <y}

Area of Rl] is AAU = (Axl)(Ay])

Choose any point in each rectangle R;; and call it (xf,y;).



The volume of the solid above R;; is approximately f(xf, y;)Axiij.

Height = f(x},v;})

Adding up the volume of all the solids above the subrectangles, we get:

n m

i=1j=1
AAU = AxlAy]
This is called a double Riemann sum.

Define:

V= lim _,ozzf(xl'yl)AAU jf(xy)dA

max Ax; Ay;
i=1 j=

Note: f(x,y) does not have to be = 0. If it is, then you get volume,
otherwise you don’t — much like 1 variable.

f(x,y) is called integrable if the limit exists.



As with 1 dimension, if f is integrable, then we can choose the rectangles, R;j, to

be all the same size and we can choose (xf, y;) to be the upper right hand
corner.

j flx,y)dA = m!}lrngn: i f(xiy;) AA
R i=1

j=1
xX; = a+ilAx
y; = c+jAy

AA = (Ax)(Ay).

Ilterated Integrals

Suppose f(x, V) is continuous on a rectangle, R = [a, b] X [c,d],
da

by fc f(x,y) dy we mean to treat x as a constant and integrate

f(x,y) in the y variable between ¢ and d.

. y=3, 2
Ex. Find fy=0 (x% + 2y) dy.
=3 =
[ &2 +2y) dy = (x%y + y) 325

=3x*4+9—-(0+0)
= 3x% +0.



d
Notice fc f(x,y) dy is just a function of x.
If f(x,y) = 0 then for a fixed x,

d
Alx) = fc f(x,y) dy =cross-sectional area of the solid bounded above
by z = f(x,y) and below by R in the x-y plane.

Then f:A(x) dx = f: [fcdf(x, y) dy] dx, called an iterated integral,

Is the volume of this solid which is equal to [f, f(x,y) dA (this is Fubini’s
theorem).

Ex. Evaluate the iterated integral flz [f03(x2 + 2y) dy] dx

flz [f03(x2 +2y) dy] dx = flz 3x% +9dx

= x3 + 9x|?
— (8+18) — (1+9)
=26 —10 = 16.

Ex. Evaluate f03 [flz(xz + 2y) dx] d

f03 [flz(xz + 2y) dx] dy = f03§x3 + 2xy|3 dy
- Llra)-Cralo
=J, (3+2y) dy

7
=y +¥%13
=7+4+9—-0=16.



Notice the two integrals are the same. This is true in general for integrals of
continuous functions over rectangles.

Fubini’s Theorem: If f is continuous on the rectangle,
R={(x,y)la<x <b,c<y<d}then:

[ reeyraa=| U ey dytdx = fy " [ o) dx ldy
A x=a —c Jx=a

y=c

The point is that to integrate over a rectangle we can do this through an iterated
integral.

Ex. Evaluate ffR (2xy — 3x?) dA where:
R={(xy)0<x<1 1<y<3}

By Fubini’s Theorem:

x=1 [y=3
j (2xy — 3x2)dA = j [jy (2xy — 3x?) dy] dx

[ x=0 y=1
_rx=1 2 2..1Y=3
=)o XY° — 3x7yly-7 dx

= [21(9x — 9x?) — (x — 3x%)] dx

= "' _6x? + 8x dx
x=0
= —2x3 + 4x?|}

=(-2+4)—(0+0) =2

OR



j j (2xy —3x?) dx dy = f x?y — x3|% dy
y=1

= o-1D-(0-0)dy

=3 2
= [ y—1ldy =2yl

-(-9)-G-1)
3-(-)-

Ex. Find the volume of the solid that lies over the rectangle:

R =1[0,3] x [1,5] and below f(x,y) = 40 — x% — y2.

=3 =5
V:f;‘ZO[;:l(zLo—xz—yZ) dy] dx
= [0y —x?y ~ B
_x=0( y —x°y 3)1 X

= 77, [(200 - 522 - Z2) - (40— x2 - 3)| dx

*=3 , 124 *=3 356
= j (160 — 4x2 — —) dx = f (—— — 4x3) dx
x=0 3 x=0 3

3
= (Z2x —x*)| =356 -81=275.
0



Ex. Evaluate ffR ye*Y dA where R = [0,2] x [0,1].

1 2 1
[, ye®? dA = [/ [ ye™ dxdy = [ e™|§dy

1 1 1
= [y —eNdy = [}(® 1D dy = Ge? -y}

=(ze2—1)— (e —0)=2e?2—1—=
2 2 2 2

1 3
=-e’—-.
2 2

Note: In the last example it’'s much easier to integrate with respect to x first. If we
integrate with respect to y first, then we would need integration by parts.

Ex. Find the volume of the solid that lies over R = [0,1] X [1,2] and below
3x2%y
y2+1’

the surface z =

_ x=1; ry=23x%y
V= fx=0 [ y=1 y2+1 dy] dx

y=2
x%In (y? + 1) dx
y=1

x=13
x=0 2

- x=1§x2(1n(5) —In(2))dx

x=0

x=13
x=0 2

= Gn(5h3*’

=3 (3)

x?In (D)dx

x=1

x=0



OR

_ (y=2 x=13x%y
V — y=1 [fx=0 y2+1 d‘x] dy

_y=2 23y |71

—Jy=1 y241

dy

x=0

_(Y=2_ vy
y=1 y2+1

dy
y=2

=>In (y? + 1)
2 y=1

1

=~(In(5) — In(2)) = 1In (;)

2

Notice in the special case where f(x,y) = g(x) h(y)
(eg. f(x,y) = x3e”)

|| reavyaa=| d | gGOhGy) dx dy = | "h) [ | ) dx] dy

= ([ 60 dy) (I 9(x) dx).



Ex. Evaluate [f, 3x?e”dA ; R=[0,1] x [0,In2].

1 In 2

ﬂ 3x2%eY dA = (j 3x? dx) (f ey dy) — (x3|(1,)(e3’|},“2
0 0

R

=(1-0)(eM2-e)=12-1) =1

Properties of double integrals:

L ff, fGey) +g,y)dA =[], f(x,y)dA+ [, g(x,y)dA
2. Jlp cfxy)ydA=cff, f(x,y)dA

3. Iff(x,y) = g(x,y)inR, then:

Hf(x,y) dA zjfg(x,y)dA.
R R
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