Maximal and Prime Ideals

If R is a ring and N is an ideal in R then R/N is also a ring (a factor ring). The question is under what conditions on R and N will R/N have special features (for example, be an integral domain or a field)?

- Ex. If $R = \mathbb{Z}$, an integral domain, and $N = p\mathbb{Z}$, for a prime p , then the factor ring $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$ which is a field.
- Ex. The ring $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain because if $a, b \in \mathbb{Z}$, and nonzero

 $(0, a), (b, 0) \in \mathbb{Z} \times \mathbb{Z}$ but $(0, a)(b, 0) = (0, 0),$

However, let $N = \{(n, 0) | n \in \mathbb{Z}\}$. N is an ideal in $\mathbb{Z} \times \mathbb{Z}$ because for any $(a, b) \in \mathbb{Z} \times \mathbb{Z}$

$$
(a,b)(n,0)=(an,0)\in N
$$

and $(n, 0)(a, b) = (na, 0) \in N$.

Then $(\mathbb{Z} \times \mathbb{Z})/N$ is isomorphic to $\mathbb Z$ under the map:

 $(0, k) + N \rightarrow k, k \in \mathbb{Z}$.

Thus the factor ring of a ring can be an integral domain even if the original ring is not.

Ex. $N = \{0, 5\} \subseteq \mathbb{Z}_{10}$ is an ideal of \mathbb{Z}_{10} , and \mathbb{Z}_{10}/N has 5 elements:

$$
0 + N, 1 + N, 2 + N, 3 + N, 4 + N.
$$

 $\mathbb{Z}_{10}/N \cong \mathbb{Z}_5$ under the map:

$$
k + N \leftrightarrow k.
$$

Thus if R is not even an integral domain it's still possible for R/N to be a field.

Ex. \mathbb{Z} is an integral domain but $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$ is not.

Thus, a factor ring may have a stronger structure than the original ring (like the example $\mathbb{Z}_{10}/N \cong \mathbb{Z}_5$) or a weaker structure than the original ring (like $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$).

- Def. Every non-zero ring R has at least two ideals. The entire ring R is an ideal, called the **improper ideal** of R. And $\{0\}$ is an ideal of R called the **trivial ideal** of R. A **proper, nontrivial ideal** of a ring R is an ideal N of R such that $N \neq R$ and $N \neq \{0\}$.
- Theorem: If R is a ring with unity and N is an ideal of R containing a unit, then $N = R$.

Proof: Let N be an ideal of R, and suppose that $u \in N$ a unit in R. Thus the condition $aN \subseteq N$ for all $a \in R$ implies that $u^{-1}N \subseteq N$. Since $u \in N \implies u^{-1}(u) = 1 \in N$. But then $aN \subseteq N \implies a(1) \subseteq N$ for all $a \in R$. Thus $N = R$.

Corollary: A field contains no proper nontrivial ideals.

Proof: Since every non-zero element of a field is a unit, any nontrivial ideal of a field contains a unit and must equal the field.

Def. A maximal ideal of a ring R is an ideal M different from R such that there is no proper ideal N of R properly containing M .

Ex. Let $R = \mathbb{Z}$. Then $p\mathbb{Z}, p$ a prime number, is an ideal and a maximal ideal.

$$
p\mathbb{Z} = \{\ldots, -3p, -2p, -p, 0, p, 2p, 3p, \ldots\}.
$$

 $N = 6\mathbb{Z} = \{\dots, -18, -12, -6, 0, 6, 12, 18, \dots\}$ is an ideal of $\mathbb Z$ but it is not maximal as both the ideals,

$$
N_1 = 2\mathbb{Z} = \{ \dots, -8, -6, -4, -2, 0, 2, 4, 6, 8, \dots \}
$$

$$
N_2 = 3\mathbb{Z} = \{ \dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots \}
$$

have the property that $N \subsetneq N_1$ and $N \subsetneq N_2$. Thus N is not a maximal ideal.

- Theorem: Let R be a commutative ring with unity. Then M is a maximal ideal of R if, and only if, R/M is a field.
- Corollary: A commutative ring with unity is a field if, and only if, it has no proper nontrivial ideals.
- Proof: A field has no proper nontrivial ideals. If a commutative ring with unity has no nontrivial ideals, then $\{0\}$ is a maximal ideal and $R/\{0\}$, which is isomorphic to R, is a field by the previous theorem.

If R is a commutative ring with unity when is R/N an integral domain? R/N is an integral domain if it doesn't have any zero divisors:

if
$$
(a + N)(b + N) = N
$$
 then either
 $a + N = N$ or $b + N = N$.

This amounts to saying if $ab \in N$ then either $a \in N$ or $b \in N$.

- Def. An ideal $N \neq R$ in a commutative ring R is a **prime ideal** if $ab \in N$ implies that either $a \in N$ or $b \in N$.
- {0} is always a prime ideal in an integral domain.
- Ex. All ideals of $\mathbb Z$ are of the form $n\mathbb Z$.

 $n = 0$ gives $n\mathbb{Z} = \{0\}$ and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

If $n = p$ a prime number then $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$ which is an integral domain (in fact, it's a field).

If $n = rs$, where neither r nor s is 1, then $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_{rs}$ is not an integral domain as $(r)(s) \equiv 0 \ (mod \ rs)$.

So $\mathbb{Z}/n\mathbb{Z}$ is an integral domain when $n = p$, a prime, or $n = 0$. $p\mathbb{Z}$, p a prime, and $\{0\}$ are prime ideals in \mathbb{Z} . So $\mathbb{Z}/n\mathbb{Z}$ is an integral domain when $n\mathbb{Z}$ is a prime ideal.

- Theorem: Let R be a commutative ring with unity and let $N \neq R$ be an ideal in R. Then R/N is an integral domain if, and only if, N is a prime ideal.
- Corollary: Every maximal ideal in a commutative ring R with unity is a prime ideal.
- Proof: If M is maximal in R, then R/M is a field and hence an integral domain and therefore M is a prime ideal.
- Ex. Show that $\{0\} \times \mathbb{Z}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$, but not a maximal ideal.

If $(a, b)(c, d) \in \{0\} \times \mathbb{Z}$ then $ac = 0$ in \mathbb{Z} . This implies either $a = 0$ or $c = 0$. Thus (a, b) or $(c, d) \in \{0\} \times \mathbb{Z}$. So $\{0\} \times \mathbb{Z}$ is prime.

Notice that $(\mathbb{Z} \times \mathbb{Z})/(\{0\} \times \mathbb{Z}) \cong \mathbb{Z}$ which is an integral domain. $\{0\} \times \mathbb{Z} \subseteq n\mathbb{Z} \times \mathbb{Z}, n \neq 0, 1$, so $\{0\} \times \mathbb{Z}$ is not maximal.

Ex. Find all prime ideals in \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The ideals in \mathbb{Z}_6 are:

$$
\mathbb{Z}_6, \ \ 2\mathbb{Z}_6 = \{0, 2, 4\}, \ \ 3\mathbb{Z}_6 = \{0, 3\}, \ \text{and } \{0\}.
$$

 ${0}$ is not a prime ideal because $(2)(3) \equiv 0 \ (mod 6)$

If $ab \in 2\mathbb{Z}_6 = \{0, 2, 4\}$, then either a or b is in $2\mathbb{Z}_6$ so $2\mathbb{Z}_6$ is prime. If $ab \in 3\mathbb{Z}_6 = \{0, 3\}$, then either a or b must be a multiple of 3 so a or b is in $3\mathbb{Z}_6$. So $3\mathbb{Z}_6$ is prime.

By definition a prime ideal $\neq R$ so \mathbb{Z}_6 is not a prime ideal in \mathbb{Z}_6 .

So $2\mathbb{Z}_6$, $3\mathbb{Z}_6$ are the prime ideals in \mathbb{Z}_6 .

The ideals in $\mathbb{Z}_2 \times \mathbb{Z}_2$ are:

 $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\{0\} \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \{0\}$, and $\{0\} \times \{0\}$.

If $(a, b)(c, d) \in \{0\} \times \mathbb{Z}_2$, then $ac = 0$ thus either $a = 0$, which means $(a, b) \in \{0\} \times \mathbb{Z}_2$ or $c = 0$, which means $(c, d) \in \{0\} \times \mathbb{Z}_2$. Thus $\{0\} \times \mathbb{Z}_2$ is prime.

A similar argument shows that $\mathbb{Z}_2 \times \{0\}$ is prime.

 ${0} \times {0}$ is not prime because $(1,0)(0,1) = (0,0)$.

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ cannot be prime in $\mathbb{Z}_2 \times \mathbb{Z}_2$.

So the prime ideals in $\mathbb{Z}_2 \times \mathbb{Z}_2$ are: $\{0\} \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \{0\}$.

So to summarize, for a commutative ring R with unity:

- 1) An ideal M of R is maximal if, and only if, R/M is a field.
- 2) An ideal N of R is prime if, and only if, R/N is an integral domain.
- 3) Every maximal ideal of R is a prime ideal.

We will not prove this, but every field F contains either a subfield isomorphic to \mathbb{Z}_p , for some prime p , or a subfield isomorphic to \mathbb{Q} .

Thus \mathbb{Z}_p and $\mathbb Q$ are the fundamental building blocks of all fields.

Def. The fields \mathbb{Z}_p and $\mathbb Q$ are called **prime fields**.

Def. If R is a commutative ring with unity and $a \in R$, the ideal ${ra | r \in R}$ of all multiples of α is the **principal ideal generated by a** and is denoted $\lt a \gt$. An ideal N of R is a **principal ideal** if $N = < a >$ for some $a \in R$.

- Ex. Every ideal of $\mathbb Z$ is of the form $n\mathbb Z$, which is generated by n , so every ideal of $\mathbb Z$ is a principal ideal.
- Ex. The ideal $\langle x \rangle$ in $F[x]$, F a field, consists of all polynomials in $F[x]$ having zero constant term.

Theorem: If F is a field then every ideal in $F[x]$ is principal.

Theorem: An ideal $\langle p(x) \rangle \neq \{0\}$ of $F[x]$ is maximal if, and only if, $p(x)$ is irreducible over F.

Proof: Suppose $\langle p(x) \rangle$ is maximal.

If $p(x) = q(x)t(x)$, $q(x)$, $t(x)$ nonconstant polynomials then both are lower degree and $\langle q(x) \rangle \geq \supseteq \langle p(x) \rangle$. So $\langle p(x) \rangle$ is not maximal, thus $p(x)$ must be irreducible.

Assume $p(x)$ is irreducible over F .

If $\langle p(x) \rangle \subseteq N \subsetneq F[x]$, then N is a principal ideal by our last theorem. So $N = $t(x) >$ and $p(x) \in N$:$

$$
p(x) = t(x)r(x).
$$

But $p(x)$ is irreducible so $t(x)$ or $r(x)$ is degree 0. If $t(x)$ is degree 0, then $t(x)$ is a unit and $\langle t(x) \rangle = F[x]$. If $r(x)$ is degree 0 then $r(x) = C \in F$ and $t(x) = \frac{1}{x}$ $\frac{1}{c}p(x)$ and $\langle x(t,x) \rangle \leq \langle y(x) \rangle$ so $N = \langle y(x) \rangle$, so $\langle y(x) \rangle$ is maximal.

- Ex. $x^3 + x + 1$ is irreducible in $\mathbb{Z}_5[x]$ (it has no zeros), so $\lt x^3 + 3x + 2$ \gt is a maximal ideal and $\mathbb{Z}_5[x]/< x^3 + x + 1 >$ is a field.
- Ex. x^2-3 is irreducible in $\mathbb{Q}[x]$, so $\mathbb{Q}[x]/< (x^2-3) >$ is a field.

Ex. Find all c in \mathbb{Z}_3 such that $\mathbb{Z}_3[x]/\lt (x^3 + cx^2 + 1) >$ is a field.

We need to find all c in \mathbb{Z}_3 such that $x^3 + c x^2 + 1$ is irreducible. Since it's degree 3 we just need to show it has no zero in \mathbb{Z}_3 . Test c values.

$$
c = 0: x3 + 1;
$$

\n
$$
x = 0; \t 03 + 1 = 1;
$$

\n
$$
x = 1, \t 13 + 1 = 2;
$$

\n
$$
x = 2; \t 23 + 1 = 23 + 1 \equiv 0 \pmod{3}.
$$

\nSo $x3 + 1$ does have a zero and is not irreducible in $\mathbb{Z}_3[x]$.

$$
c = 1: x3 + x2 + 1;
$$

\n
$$
x = 0; \t 03 + 02 + 1 = 1;
$$

\n
$$
x = 1; \t 13 + 1 + 1 \equiv 0 \pmod{3}.
$$

So it also has a zero and is not irreducible.

$$
c = 2: x3 + 2x2 + 1;
$$

\n
$$
x = 0; \quad 03 + 2(02) + 1 = 1;
$$

\n
$$
x = 1; \quad 13 + 2(12) + 1 \equiv 1 \ (mod\ 3);
$$

\n
$$
x = 2, \quad 23 + 2(22) + 1 \equiv 2 \ (mod\ 3).
$$

\nSo $x3 + 2x2 + 1$ is irreducible in $\mathbb{Z}_3[x]$.

Thus only for $c=2$ is $\mathbb{Z}_3[x]/<(x^3+cx^2+1)>$ a field.

Theorem: Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $q(x)t(x)$ for $q(x),t(x) \in F[x]$, then either $p(x)$ divides $q(x)$ or $p(x)$ divides $t(x)$.

Proof: Suppose $p(x)$ divides $q(x)t(x)$.

Then $q(x)t(x) \in < p(x) >$, which is maximal since $p(x)$ is irreducible.

Therefore, $\langle p(x) \rangle$ is a prime ideal, since every maximal ideal in a commutative ring with unity is prime.

Hence, $q(x)t(x) \in \langle p(x) \rangle$ implies $q(x) \in \langle p(x) \rangle$ or $t(x) \in \langle p(x) \rangle.$

Therefore, $p(x)$ divides $q(x)$ or $p(x)$ divides $t(x)$.