Maximal and Prime Ideals

If R is a ring and N is an ideal in R then R/N is also a ring (a factor ring). The question is under what conditions on R and N will R/N have special features (for example, be an integral domain or a field)?

- Ex. If $R = \mathbb{Z}$, an integral domain, and $N = p\mathbb{Z}$, for a prime p, then the factor ring $\mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$ which is a field.
- Ex. The ring $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain because if $a, b \in \mathbb{Z}$, and nonzero

 $(0, a), (b, 0) \in \mathbb{Z} \times \mathbb{Z}$ but (0, a)(b, 0) = (0, 0),

However, let $N = \{(n, 0) | n \in \mathbb{Z}\}$. *N* is an ideal in $\mathbb{Z} \times \mathbb{Z}$ because for any $(a, b) \in \mathbb{Z} \times \mathbb{Z}$

$$(a,b)(n,0) = (an,0) \in N$$

and $(n, 0)(a, b) = (na, 0) \in N$.

Then $(\mathbb{Z} \times \mathbb{Z})/N$ is isomorphic to \mathbb{Z} under the map:

 $(0,k) + N \rightarrow k, k \in \mathbb{Z}.$

Thus the factor ring of a ring can be an integral domain even if the original ring is not.

Ex. $N = \{0, 5\} \subseteq \mathbb{Z}_{10}$ is an ideal of \mathbb{Z}_{10} , and \mathbb{Z}_{10}/N has 5 elements:

$$0 + N$$
, $1 + N$, $2 + N$, $3 + N$, $4 + N$.

 $\mathbb{Z}_{10}/N \cong \mathbb{Z}_5$ under the map:

$$k + N \leftrightarrow k$$
.

Thus if R is not even an integral domain it's still possible for R/N to be a field.

Ex. \mathbb{Z} is an integral domain but $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$ is not.

Thus, a factor ring may have a stronger structure than the original ring (like the example $\mathbb{Z}_{10}/N \cong \mathbb{Z}_5$) or a weaker structure than the original ring (like $\mathbb{Z}/8\mathbb{Z} \cong \mathbb{Z}_8$).

- Def. Every non-zero ring R has at least two ideals. The entire ring R is an ideal, called the **improper ideal** of R. And $\{0\}$ is an ideal of R called the **trivial ideal** of R. A **proper, nontrivial ideal** of a ring R is an ideal N of R such that $N \neq R$ and $N \neq \{0\}$.
- Theorem: If R is a ring with unity and N is an ideal of R containing a unit, then N = R.
 - Proof: Let N be an ideal of R, and suppose that $u \in N$ a unit in R. Thus the condition $aN \subseteq N$ for all $a \in R$ implies that $u^{-1}N \subseteq N$. Since $u \in N \Longrightarrow u^{-1}(u) = 1 \in N$. But then $aN \subseteq N \Longrightarrow a(1) \subseteq N$ for all $a \in R$. Thus N = R.

Corollary: A field contains no proper nontrivial ideals.

Proof: Since every non-zero element of a field is a unit, any nontrivial ideal of a field contains a unit and must equal the field.

Def. A **maximal ideal** of a ring R is an ideal M different from R such that there is no proper ideal N of R properly containing M.

Ex. Let $R = \mathbb{Z}$. Then $p\mathbb{Z}$, p a prime number, is an ideal and a maximal ideal.

$$p\mathbb{Z} = \{\dots, -3p, -2p, -p, 0, p, 2p, 3p, \dots\}.$$

 $N = 6\mathbb{Z} = \{\dots, -18, -12, -6, 0, 6, 12, 18, \dots\}$ is an ideal of \mathbb{Z} but it is not maximal as both the ideals,

$$N_1 = 2\mathbb{Z} = \{\dots, -8, -6, -4, -2, 0, 2, 4, 6, 8, \dots\}$$
$$N_2 = 3\mathbb{Z} = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\}$$

have the property that $N \subsetneq N_1$ and $N \subsetneq N_2$. Thus N is not a maximal ideal.

- Theorem: Let R be a commutative ring with unity. Then M is a maximal ideal of R if, and only if, R/M is a field.
- Corollary: A commutative ring with unity is a field if, and only if, it has no proper nontrivial ideals.
- Proof: A field has no proper nontrivial ideals. If a commutative ring with unity has no nontrivial ideals, then $\{0\}$ is a maximal ideal and $R/\{0\}$, which is isomorphic to R, is a field by the previous theorem.

If R is a commutative ring with unity when is R/N an integral domain? R/N is an integral domain if it doesn't have any zero divisors:

if
$$(a + N)(b + N) = N$$
 then either
 $a + N = N$ or $b + N = N$.

This amounts to saying if $ab \in N$ then either $a \in N$ or $b \in N$.

- Def. An ideal $N \neq R$ in a commutative ring R is a **prime ideal** if $ab \in N$ implies that either $a \in N$ or $b \in N$.
- $\{0\}$ is always a prime ideal in an integral domain.
- Ex. All ideals of \mathbb{Z} are of the form $n\mathbb{Z}$.

n = 0 gives $n\mathbb{Z} = \{0\}$ and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$.

If n = p a prime number then $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$ which is an integral domain (in fact, it's a field).

If n = rs, where neither r nor s is 1, then $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_{rs}$ is not an integral domain as $(r)(s) \equiv 0 \pmod{rs}$.

So $\mathbb{Z}/n\mathbb{Z}$ is an integral domain when n = p, a prime, or n = 0. $p\mathbb{Z}, p$ a prime, and $\{0\}$ are prime ideals in \mathbb{Z} . So $\mathbb{Z}/n\mathbb{Z}$ is an integral domain when $n\mathbb{Z}$ is a prime ideal.

- Theorem: Let R be a commutative ring with unity and let $N \neq R$ be an ideal in R. Then R/N is an integral domain if, and only if, N is a prime ideal.
- Corollary: Every maximal ideal in a commutative ring R with unity is a prime ideal.
- Proof: If M is maximal in R, then R/M is a field and hence an integral domain and therefore M is a prime ideal.
- Ex. Show that $\{0\} \times \mathbb{Z}$ is a prime ideal of $\mathbb{Z} \times \mathbb{Z}$, but not a maximal ideal.

If $(a, b)(c, d) \in \{0\} \times \mathbb{Z}$ then ac = 0 in \mathbb{Z} . This implies either a = 0 or c = 0. Thus (a, b) or $(c, d) \in \{0\} \times \mathbb{Z}$. So $\{0\} \times \mathbb{Z}$ is prime.

Notice that $(\mathbb{Z} \times \mathbb{Z})/(\{0\} \times \mathbb{Z}) \cong \mathbb{Z}$ which is an integral domain. $\{0\} \times \mathbb{Z} \subseteq n\mathbb{Z} \times \mathbb{Z}, n \neq 0, 1, \text{ so } \{0\} \times \mathbb{Z}$ is not maximal. Ex. Find all prime ideals in \mathbb{Z}_6 and $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The ideals in \mathbb{Z}_6 are:

$$\mathbb{Z}_6$$
, $2\mathbb{Z}_6 = \{0, 2, 4\}$, $3\mathbb{Z}_6 = \{0, 3\}$, and $\{0\}$.

 $\{0\}$ is not a prime ideal because $(2)(3) \equiv 0 \pmod{6}$

If $ab \in 2\mathbb{Z}_6 = \{0, 2, 4\}$, then either a or b is in $2\mathbb{Z}_6$ so $2\mathbb{Z}_6$ is prime. If $ab \in 3\mathbb{Z}_6 = \{0, 3\}$, then either a or b must be a multiple of 3 so a or b is in $3\mathbb{Z}_6$. So $3\mathbb{Z}_6$ is prime.

By definition a prime ideal $\neq R$ so \mathbb{Z}_6 is not a prime ideal in \mathbb{Z}_6 .

So $2\mathbb{Z}_6$, $3\mathbb{Z}_6$ are the prime ideals in \mathbb{Z}_6 .

The ideals in $\mathbb{Z}_2 \times \mathbb{Z}_2$ are:

 $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\{0\} \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \{0\}$, and $\{0\} \times \{0\}$.

If $(a, b)(c, d) \in \{0\} \times \mathbb{Z}_2$, then ac = 0 thus either a = 0, which means $(a, b) \in \{0\} \times \mathbb{Z}_2$ or c = 0, which means $(c, d) \in \{0\} \times \mathbb{Z}_2$. Thus $\{0\} \times \mathbb{Z}_2$ is prime.

A similar argument shows that $\mathbb{Z}_2 \times \{0\}$ is prime.

 $\{0\} \times \{0\}$ is not prime because (1,0)(0,1) = (0,0).

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ cannot be prime in $\mathbb{Z}_2 \times \mathbb{Z}_2$.

So the prime ideals in $\mathbb{Z}_2 \times \mathbb{Z}_2$ are: $\{0\} \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \{0\}$.

So to summarize, for a commutative ring R with unity:

- 1) An ideal M of R is maximal if, and only if, R/M is a field.
- 2) An ideal N of R is prime if, and only if, R/N is an integral domain.
- 3) Every maximal ideal of R is a prime ideal.

We will not prove this, but every field F contains either a subfield isomorphic to \mathbb{Z}_p , for some prime p, or a subfield isomorphic to \mathbb{Q} .

Thus \mathbb{Z}_p and \mathbb{Q} are the fundamental building blocks of all fields.

Def. The fields \mathbb{Z}_p and \mathbb{Q} are called **prime fields**.

Def. If R is a commutative ring with unity and $a \in R$, the ideal $\{ra \mid r \in R\}$ of all multiples of a is the **principal ideal generated** by a and is denoted < a >. An ideal N of R is a **principal ideal** if N = < a > for some $a \in R$.

- Ex. Every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$, which is generated by n, so every ideal of \mathbb{Z} is a principal ideal.
- Ex. The ideal $\langle x \rangle$ in F[x], F a field, consists of all polynomials in F[x] having zero constant term.

Theorem: If F is a field then every ideal in F[x] is principal.

Theorem: An ideal $\langle p(x) \rangle \neq \{0\}$ of F[x] is maximal if, and only if, p(x) is irreducible over F.

Proof: Suppose < p(x) > is maximal.

If p(x) = q(x)t(x), q(x), t(x) nonconstant polynomials then both are lower degree and $\langle q(x) \rangle \supseteq \langle p(x) \rangle$. So $\langle p(x) \rangle$ is not maximal, thus p(x) must be irreducible.

Assume p(x) is irreducible over F.

If $\langle p(x) \rangle \subseteq N \subsetneq F[x]$, then N is a principal ideal by our last theorem. So $N = \langle t(x) \rangle$ and $p(x) \in N$:

$$p(x) = t(x)r(x).$$

But p(x) is irreducible so t(x) or r(x) is degree 0. If t(x) is degree 0, then t(x) is a unit and < t(x) > = F[x]. If r(x) is degree 0 then $r(x) = C \in F$ and $t(x) = \frac{1}{c}p(x)$ and $< t(x) > \subseteq < p(x) >$ so N = < p(x) >, so < p(x) > is maximal.

- Ex. $x^3 + x + 1$ is irreducible in $\mathbb{Z}_5[x]$ (it has no zeros), so $\langle x^3 + 3x + 2 \rangle$ is a maximal ideal and $\mathbb{Z}_5[x]/\langle x^3 + x + 1 \rangle$ is a field.
- Ex. $x^2 3$ is irreducible in $\mathbb{Q}[x]$, so $\mathbb{Q}[x] / \langle (x^2 3) \rangle$ is a field.

Ex. Find all c in \mathbb{Z}_3 such that $\mathbb{Z}_3[x]/ < (x^3 + cx^2 + 1) >$ is a field.

We need to find all c in \mathbb{Z}_3 such that $x^3 + cx^2 + 1$ is irreducible. Since it's degree 3 we just need to show it has no zero in \mathbb{Z}_3 . Test c values.

$$c = 0: x^{3} + 1;$$

$$x = 0; \quad 0^{3} + 1 = 1;$$

$$x = 1, \quad 1^{3} + 1 = 2;$$

$$x = 2; \quad 2^{3} + 1 = 2^{3} + 1 \equiv 0 \pmod{3}.$$

So $x^3 + 1$ does have a zero and is not irreducible in $\mathbb{Z}_3[x]$.

$$c = 1: x^{3} + x^{2} + 1;$$

$$x = 0; \quad 0^{3} + 0^{2} + 1 = 1;$$

$$x = 1; \quad 1^{3} + 1 + 1 \equiv 0 \pmod{3}$$

So it also has a zero and is not irreducible.

$$c = 2: x^{3} + 2x^{2} + 1;$$

$$x = 0; \quad 0^{3} + 2(0^{2}) + 1 = 1;$$

$$x = 1; \quad 1^{3} + 2(1^{2}) + 1 \equiv 1 \pmod{3};$$

$$x = 2, \quad 2^{3} + 2(2^{2}) + 1 \equiv 2 \pmod{3}.$$

So $x^{3} + 2x^{2} + 1$ is irreducible in $\mathbb{Z}_{3}[x]$.

Thus only for c = 2 is $\mathbb{Z}_3[x] / \langle (x^3 + cx^2 + 1) \rangle$ a field.

Theorem: Let p(x) be an irreducible polynomial in F[x]. If p(x) divides q(x)t(x) for $q(x), t(x) \in F[x]$, then either p(x) divides q(x) or p(x) divides t(x).

Proof: Suppose p(x) divides q(x)t(x).

Then $q(x)t(x) \in \langle p(x) \rangle$, which is maximal since p(x) is irreducible.

Therefore, < p(x) > is a prime ideal, since every maximal ideal in a commutative ring with unity is prime.

Hence, $q(x)t(x) \in \langle p(x) \rangle$ implies $q(x) \in \langle p(x) \rangle$ or $t(x) \in \langle p(x) \rangle$.

Therefore, p(x) divides q(x) or p(x) divides t(x).