Diagonalizability

So far we know that a linear operator T on V or its associated matrix is
diagonalizable if and only if there exists an ordered basis B = {vy, ..., v, } of
eigenvectors of T. However, we don’t know yet when a basis of eigenvectors

exists. We saw in an example (A = [(1) ﬂ ) that there are linear

operators/matrices which are not diagonalizable.

Theorem: Let T be a linear operator on a vector space V, and let 44, ..., A; be
distinct eigenvalues of T. If vy, ..., v}, are eigenvectors of T such that 4;
corresponds to v; for 1 < i < k, then {v,, ..., v, } is linearly independent.

Proof: The proof is by induction on k.

Fork =1, v; # 0 since it’s an eigenvector so {v, } is linearly independent.

Now assume the theorem holds for k — 1 distinct eigenvalues and let’s
prove it for k distinct eigenvalues.

Let {v,, ... v } be eigenvectors associated with the distinct eigenvalues
Aty ey A

Suppose {v, ..., Vi } is linearly dependent. Then we have:
(%) a,v; + - aivr = 0; where not all of the a;’s are 0.
Let’s apply T — A1 to both sides of this equations:
(T — A D(agvy + - agv,) =0
a, (T — A4 Dvy + - ap (T — A Dv, =0
ay (A — L )vy + -+ a1 Aoy — AV + @ (A — ) = 0.

So a; (A —A)vs + o+ a1 (A1 — A Vg1 = 0.



But {vy, ..., vx_1} is linearly independent so ay, ..., ax_1 = 0, since A; # A; if
[+ k.

Thus from (*) we get a; = 0.

Hence {vy, ..., v} is linearly independent.

Corollary: Let T be a linear operator on an n-dimensional vector space V. If T has
n distinct eigenvalues then T is diagonalizable.

The converse to the previous theorem is false. That s, if T is diagonalizable it is
not true that T must have n distinct eigenvalues. For example, the identity linear
operator is diagonal but has only one distinct eigenvalue.

If T is a linear operator on an n-dimensional vector space V/, then its characteristic
polynomial, p(1) = det(A — AI), where [T] = A4, is a polynomial of degree n in A.
In general not every polynomial of degree n can be completely factored into
linear factors with real coefficients. For example, p(1) = A2 + 1 can’t be factored
into linear factors with real coefficients (it can with complex coefficients). If a
polynomial of degree n factors completely into linear factors with real
coefficients, ie

p(D) =c(A—ap) (A —ay)
then we say p(4) splits over R. Note that the a;’s need not be distinct.



Theorem: The characteristic polynomial of any diagonalizable linear operator
splits over R.

Proof: Let T be a diagonalizable linear operator on an n-dimensional vector space
V. Then there is an ordered basis for V of eigenvectors B = {vy, ..., v, }
such that

The characteristic polynomial for T is
/11 -1 . 0 ]

p(A) =det(D — AI) = detl “ :
0 e Ay — A

== (An—A).

Thus the characteristic polynomial splits over R.

However, the characteristic polynomial of T may split over R without T being

diagonalizable. We saw that with the example [T] = 4 = [(1) ﬂ

Theorem: Let T be a linear operator on an n-dimensional vector space V. Then T
is diagonalizable if and only if:

1. The characteristic polynomial for T splits over R and

2. For each eigenvalue A; of T, the multiplicity of A; equals dim N(T — A;1).



Ex. LetA = [(1) _g] Show that A is diagonalizable and find a matrix P such that

D = P~ 1AP is diagonal. Use this diagonal matrix to calculate A* where k is a
positive integer.

We start by finding the characteristic polynomial for A, and solving for its roots.

p(A1) = det(4 — AI) = det [—/1 -2 ]

1 3-2

=—A3-21) +2

=12 -3142=@1A-2)(A1-1)=0
= A1=1.2

Since A has two distinct eigenvalues and dim(R?) = 2, we know there exist
eigenvectors vy, v, for A that form a basis for R2.

Now let’s find the eigenvectors:

ForA = 1:
=0 [e]=[)

[_i _5] [iﬂ - [8] = —x;—2x, =0 or x; = —2x,.

So any vector of the form < —2a,a >= a < —2,1 > is an eigenvector
corresponding to A = 1. In particular we can use v; =< —2,1 >,

ForA = 2:
a=2n[] =[]

[_i _ﬂ [2] - [8] = —2x%—2x,=0 or x = —x,.

So any vector of the form < —a, ¢ >= a < —1,1 > is an eigenvector
corresponding to A = 2. In particular we can use v, =< —1,1 >.



The change of basis P will map vectors in terms of the basis
B ={< —-2,1>,< —1,1 >} into vectors in the standard ordered basis for R?.

P=[_i _ﬂ = P_lzdes(P)[—i _;]:-1[_1 —é]

[

So with respect to the basis B we have:
" -1 -1310 -211—-2 -1
b=~ AP__1 2”1 3” 1 1]

-[1 =
1 0
0 2

Which is exactly the matrix we would expect given that the eigenvalues of A
are 1 and 2.

To calculate A* for any positive integer k notice the following:
D =P71AP
PD = AP
PDP~'=A =  (PDP 1)k = A%,
But (PDP L)k =(pDP"V)(PDP~1)..-(PDP~1) = PDkp~1,

So we have: Ak = ppkp1,
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Ex. Determine if T: P, (R) = P,(R) by
T(p(x)) = (3p(0) + p'(0)) + 3p'(0)x + p" (0)x

Is diagonalizable.

Let p(x) = ay + a;x + a,x2. Then we have:
p(x) =a,+a;x+ax? =  p(0)=aq,
p'(x) = a; + 2a,x => p'0)=q
p"(x) = 2a, = p"(0) = 2a,.
Thus we can write:

T(ay + a;x + a,x?) = (3ay + a;) + 3a,;x + 2a,x2.

-1
2

We can find the matrix representation of T with respect to the standard basis

B ={1,x,x%} by:

T(1) =3=3(1)+0(x) +0(x?) =< 3,0,0 >4
T(x)=1+3x=1(1)+3(x) + 0(x?) =< 1,3,0 >p
T(x?) =2x2=001)+0(x) +2(x)?) =< 0,0,2 >

0 3 0}
0 0 2

A= [T]B =

310]



Now let’s find the eigenvalues:

3—4 1 0
0 3—-41 0
0 0 2—4

A = 3 isadouble eigenvalue

p(2) = det(d — AI) = =(3-12(2-2) =0

A = 2 is an eigenvalue.

0 1 0
A=A, =3: A—=3I=(0 0 O | hasrank2.
0 0 -1

Notice that A — 3I:R3 - R3 and Rank(A — 31) = 2. Thus we have:
dim N(A — 31) + Rank(A — 3I) = dim(R3)
dimN(A — 3I) + 2 =3
= dimN(A — 3I) = 1 # multiplicity of A; which is 2.

Thus T is not diagonalizable.

Note: You could also find the eigenspace of ; = {a < 0,1,0 >| a € R}
which has dimension 1 which is not equal to the multiplicity of A;.



1 1 1
1 1 1]isnotdiagonalizable.
0 0 k

Ex. Find the values of k for which A =

Let’s start by finding p(1) = det(4 — AI) and seeing if it splits over R. If it does
we can then see if A has any multiple eigenvalues (if it doesn’t then A will
automatically be diagonalizable). We can then test the multiple eigenvalues to
see if dim(N(A — /11)) =multiplicity of A.

1-1 1 1
det(A—AD)=| 1 1-1 1 |. Usingthe bottom row we get:
0 0 k—A
o l=2 1
== 7"

=k -D[A-D*-1] = (k=DAD)( - 2).
So p(A) splits over R and the eigenvalues are A = k, 0,2.

So the only values of k that will give us any multiple eigenvalues would be
k=0,2.

Thus if kK = 0 in the original matrix then A = 0 would be a double eigenvalue.

If k = 2 in the original matrix then A = 2 would be a double eigenvalue.
Now check to see if the original matrix is diagonalizable for k = 0 and/or k = 2.

If k = 0,then A = 0 is a double eigenvalue and

1 1 1
A-0I=[1 1 1
0 0 O

= Rank(4) = 1.




Thus we have:  dim(N(4 — 01)) + Rank(4) = dim(R%) = 3
dim(NA-0D)+ 1 =3
= dim(N(A — 0I)) = 2 =multiplicity of 1 = 0.

Since If k = 0, then A = 0 is the only multiple eigenvalue, A is diagonalizable.

If k = 2,then A = 2 is a double eigenvalue and

1 1 1 2 0 0] [—-1 1 1
A-2I=11 1 1|{—-|0 2 0|=] 1 -1 1

;. Rank(4) = 2.
0O 0 2 0O 0 2 0 0 O

Thus we have: dim(N(A — 21)) + Rank(4) = dim(R3) = 3
dim(N(A-0D)+ 2 =3

= dim(N(A — 0I)) = 1 #multiplicity of 1 = 2.
Thusif k = 2, Ais not diagonalizable.



