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                                                Diagonalizability 

 

So far we know that a linear operator 𝑇 on 𝑉 or its associated matrix is 

diagonalizable if and only if there exists an ordered basis 𝐵 = {𝑣1, … , 𝑣𝑛} of 

eigenvectors of 𝑇.  However, we don’t know yet when a basis of eigenvectors 

exists.  We saw in an example (𝐴 = [
1 1
0 1

] ) that there are linear 

operators/matrices which are not diagonalizable. 

 

Theorem:  Let 𝑇 be a linear operator on a vector space 𝑉, and let 𝜆1, … , 𝜆𝑘  be 

distinct eigenvalues of 𝑇. If 𝑣1, … , 𝑣𝑘  are eigenvectors of 𝑇 such that 𝜆𝑖 

corresponds to 𝑣𝑖  for 1 ≤ 𝑖 ≤ 𝑘, then {𝑣1, … , 𝑣𝑘} is linearly independent. 

 

Proof:  The proof is by induction on 𝑘. 

             For 𝑘 = 1,  𝑣1 ≠ 0 since it’s an eigenvector so {𝑣1} is linearly independent.   

 

             Now assume the theorem holds for 𝑘 − 1 distinct eigenvalues and let’s 

             prove it for 𝑘 distinct eigenvalues. 

             Let {𝑣1, … 𝑣𝑘} be eigenvectors associated with the distinct eigenvalues 

             𝜆1, … , 𝜆𝑘 . 

            Suppose {𝑣1, … , 𝑣𝑘} is linearly dependent.  Then we have: 

                  (∗)         𝑎1𝑣1 + ⋯ 𝑎𝑘𝑣𝑘 = 0;    where not all of the 𝑎𝑖 ′𝑠 are 0.      

            Let’s apply 𝑇 − 𝜆𝑘𝐼 to both sides of this equations: 

                                                            (𝑇 − 𝜆𝑘𝐼)(𝑎1𝑣1 + ⋯ 𝑎𝑘𝑣𝑘) = 0 

                                              𝑎1(𝑇 − 𝜆𝑘𝐼)𝑣1 + ⋯ 𝑎𝑘(𝑇 − 𝜆𝑘𝐼)𝑣𝑘 = 0 

   𝑎1(𝜆1 − 𝜆𝑘)𝑣1 + ⋯ + 𝑎𝑘−1(𝜆𝑘−1 − 𝜆𝑘)𝑣𝑘−1 + 𝑎𝑘(𝜆𝑘 − 𝜆𝑘) = 0.   

 

     So                          𝑎1(𝜆1 − 𝜆𝑘)𝑣1 + ⋯ + 𝑎𝑘−1(𝜆𝑘−1 − 𝜆𝑘)𝑣𝑘−1 = 0. 
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       But {𝑣1, … , 𝑣𝑘−1} is linearly independent so 𝑎1, … , 𝑎𝑘−1 = 0, since 𝜆𝑖 ≠ 𝜆𝑘 if 

        𝑖 ≠ 𝑘. 

        Thus from (∗) we get 𝑎𝑘 = 0. 

         Hence {𝑣1, … , 𝑣𝑘} is linearly independent. 

 

Corollary:  Let 𝑇 be a linear operator on an 𝑛-dimensional vector space 𝑉.  If 𝑇 has 

𝑛 distinct eigenvalues then 𝑇 is diagonalizable. 

 

The converse to the previous theorem is false.  That is, if 𝑇 is diagonalizable it is 

not true that 𝑇 must have 𝑛 distinct eigenvalues.  For example, the identity linear 

operator is diagonal but has only one distinct eigenvalue. 

 

If 𝑇 is a linear operator on an 𝑛-dimensional vector space 𝑉, then its characteristic 

polynomial, 𝑝(𝜆) = det(𝐴 − 𝜆𝐼), where [𝑇] = 𝐴, is a polynomial of degree 𝑛 in 𝜆.  

In general not every polynomial of degree 𝑛 can be completely factored into 

linear factors with real coefficients.  For example, 𝑝(𝜆) = 𝜆2 + 1 can’t be factored 

into linear factors with real coefficients (it can with complex coefficients).  If a 

polynomial of degree 𝑛 factors completely into linear factors with real 

coefficients, ie 

                                    𝑝(𝜆) = 𝑐(𝜆 − 𝑎1) ⋯ (𝜆 − 𝑎𝑛) 

then we say  𝒑(𝝀) splits over ℝ.  Note that the 𝑎𝑖’s need not be distinct. 
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Theorem:  The characteristic polynomial of any diagonalizable linear operator 

splits over ℝ. 

 

Proof:  Let 𝑇 be a diagonalizable linear operator on an 𝑛-dimensional vector space 

              𝑉.  Then there is an ordered basis for 𝑉 of eigenvectors 𝐵 = {𝑣1, … , 𝑣𝑛} 

               such that 

                                         [𝑇]𝐵 = 𝐷 = [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

].   

 

                The characteristic polynomial for 𝑇 is 

                     𝑝(𝜆) = det(𝐷 − 𝜆𝐼) = 𝑑𝑒𝑡 [
𝜆1 − 𝜆 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛 − 𝜆

] 

                                                           = (𝜆1 − 𝜆) ⋯ (𝜆𝑛 − 𝜆). 

                 Thus the characteristic polynomial splits over ℝ. 

 

However, the characteristic polynomial of 𝑇 may split over ℝ without 𝑇 being 

diagonalizable.  We saw that with the example [𝑇] = 𝐴 = [
1 1
0 1

]. 

 

Theorem:  Let 𝑇 be a linear operator on an 𝑛-dimensional vector space 𝑉.  Then 𝑇 

is diagonalizable if and only if: 

     1.   The characteristic polynomial for 𝑇 splits over ℝ and 

     2.   For each eigenvalue 𝜆𝑖  of 𝑇, the multiplicity of 𝜆𝑖 equals dim 𝑁(𝑇 − 𝜆𝑖𝐼). 
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Ex.  Let 𝐴 = [
0 −2
1    3

].  Show that 𝐴 is diagonalizable and find a matrix 𝑃 such that 

       𝐷 = 𝑃−1𝐴𝑃 is diagonal.  Use this diagonal matrix to calculate 𝐴𝑘 where 𝑘 is a 

       positive integer.  

 

    We start by finding the characteristic polynomial for 𝐴, and solving for its roots. 

            𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = 𝑑𝑒𝑡 [
−𝜆 −2
1 3 − 𝜆

] 

                       = −𝜆(3 − 𝜆) + 2 

                       = 𝜆2 − 3𝜆 + 2 = (𝜆 − 2)( 𝜆 − 1) = 0 

                                             ⟹          𝜆 = 1,2. 

        Since 𝐴 has two distinct eigenvalues and dim(ℝ2) = 2, we know there exist 

         eigenvectors  𝑣1, 𝑣2 for 𝐴 that form a basis for ℝ2.    

 

               Now let’s find the eigenvectors: 

             For 𝜆 = 1:      

                                (𝐴 − 𝐼) [
𝑥1

𝑥2
] = [

0
0

] 

                           [
−1 −2
   1    2

] [
𝑥1

𝑥2
] = [

0
0

]    ⟹    −𝑥1 − 2𝑥2 = 0   or   𝑥1 = −2𝑥2. 

              So any vector of the form < −2𝛼, 𝛼 >= 𝛼 < −2,1 >  is an eigenvector 

               corresponding to 𝜆 = 1.  In particular we can use 𝑣1 =< −2,1 >.  

 

              For 𝜆 = 2:   

                             (𝐴 − 2𝐼) [
𝑥1

𝑥2
] = [

0
0

] 

                          [
−2 −2
   1    1

] [
𝑥1

𝑥2
] = [

0
0

]    ⟹    −2𝑥1 − 2𝑥2 = 0   or   𝑥1 = −𝑥2. 

               So any vector of the form < −𝛼, 𝛼 >= 𝛼 < −1,1 > is an eigenvector 

               corresponding to 𝜆 = 2.  In particular we can use 𝑣2 =< −1,1 >. 
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   The change of basis 𝑃 will map vectors in terms of the basis                                

   𝐵 = {< −2,1 >, < −1,1 >}  into vectors in the standard ordered basis for ℝ2.                 

        𝑃 = [
−2 −1
   1    1

]     ⟹      𝑃−1 =
1

det(𝑃)
[
     1      1
 − 1   −2

] = −1 [
     1      1
 − 1   −2

]       

                                                            = [
−1 −1
   1    2

]. 

 

    So with respect to the basis 𝐵 we have: 

               𝐷 = 𝑃−1𝐴𝑃 = [
−1 −1
   1    2

] [
0 −2
1    3

] [
−2 −1
   1    1

]      

                                      = [
−1 −1
   1    2

] [
−2 −2
   1    2

]  

                                      = [
1 0
0 2

] 

       Which is exactly the matrix we would expect given that the eigenvalues of 𝐴 

        are 1 and 2. 

 

       To calculate 𝐴𝑘 for any positive integer 𝑘 notice the following: 

                                         𝐷 = 𝑃−1𝐴𝑃 

                                       𝑃𝐷 = 𝐴𝑃 

                                𝑃𝐷𝑃−1 = 𝐴     ⟹       (𝑃𝐷𝑃−1)𝑘 = 𝐴𝑘. 

          But      (𝑃𝐷𝑃−1)𝑘 = (𝑃𝐷𝑃−1)(𝑃𝐷𝑃−1) ⋯ (𝑃𝐷𝑃−1) = 𝑃𝐷𝑘𝑃−1. 

 

          So we have:        𝐴𝑘 =  𝑃𝐷𝑘𝑃−1.  
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             𝐴𝑘 = [
−2 −1
   1    1

] [
1 0
0 2

]
𝑘

[
−1 −1
   1    2

] = [
−2 −1
   1    1

] [1𝑘 0
0 2𝑘] [

−1 −1
   1    2

]    

 

                                 = [
−2 −1
   1    1

] [
−1 −1
  2𝑘 2𝑘+1] = [   2 − 2𝑘    2 − 2𝑘+1

−1 + 2𝑘 −1 + 2𝑘+1]. 

 

 

Ex. Determine if 𝑇: 𝑃2(ℝ) → 𝑃2(ℝ)  by 

                 𝑇(𝑝(𝑥)) = (3𝑝(0) + 𝑝′(0)) + 3𝑝′(0)𝑥 + 𝑝′′(0)𝑥2 

       Is diagonalizable. 

 

      Let 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2.    Then we have: 

                     𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2       ⇒        𝑝(0) = 𝑎0         

                     𝑝′(𝑥) = 𝑎1 + 2𝑎2𝑥                 ⇒        𝑝′(0) = 𝑎1 

                     𝑝′′(𝑥) = 2𝑎2                             ⇒       𝑝′′(0) = 2𝑎2. 

     Thus we can write: 

                     𝑇(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2) = (3𝑎0 + 𝑎1) + 3𝑎1𝑥 + 2𝑎2𝑥2. 

 

     We can find the matrix representation of 𝑇 with respect to the standard basis 

     𝐵 = {1, 𝑥, 𝑥2}  by:  

 

       𝑇(1) = 3 = 3(1) + 0(𝑥) + 0(𝑥2) =< 3, 0, 0 >𝐵 

       𝑇(𝑥) = 1 + 3𝑥 = 1(1) + 3(𝑥) + 0(𝑥2) =< 1, 3, 0 >𝐵 

       𝑇(𝑥2) = 2𝑥2 = 0(1) + 0(𝑥) + 2(𝑥)2) =< 0, 0, 2 >𝐵   

 

                          𝐴 = [𝑇]𝐵 = [
3 1 0
0 3 0
0 0 2

].   
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      Now let’s find the eigenvalues: 

          𝑝(𝜆) = det(𝐴 − 𝜆𝐼) = |
3 − 𝜆 1 0

0 3 − 𝜆 0
0 0 2 − 𝜆

| = (3 − 𝜆)2(2 − 𝜆) = 0. 

                    𝜆 = 3  is a double eigenvalue 

                    𝜆 = 2  is an eigenvalue. 

        𝜆1 = 𝜆2 = 3:            𝐴 − 3𝐼 = [
0 1 0
0 0 0
0 0 −1

]  has rank 2. 

 

       Notice that    𝐴 − 3𝐼: ℝ3 → ℝ3   and 𝑅𝑎𝑛𝑘(𝐴 − 3𝐼) = 2.  Thus we have: 

                          dim 𝑁(𝐴 − 3𝐼) + 𝑅𝑎𝑛𝑘(𝐴 − 3𝐼) = dim (ℝ3)    

                           dim 𝑁(𝐴 − 3𝐼) +           2              = 3    

                           ⇒       dim 𝑁(𝐴 − 3𝐼) = 1 ≠ multiplicity of 𝜆1 which is 2. 

 

       Thus 𝑇 is not diagonalizable.   

 

       Note:   You could also find the eigenspace of 𝜆1 = {𝛼 < 0,1,0 >| 𝛼 ∈ ℝ} 

       which has dimension 1 which is not equal to the multiplicity of 𝜆1. 
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Ex.  Find the values of 𝑘 for which 𝐴 = [
1 1 1
1 1 1
0 0 𝑘

] is not diagonalizable. 

 

Let’s start by finding 𝑝(𝜆) = det (𝐴 − 𝜆𝐼) and seeing if it splits over ℝ. If it does 

we can then see if 𝐴 has any multiple eigenvalues (if it doesn’t then 𝐴 will 

automatically be diagonalizable).  We can then test the multiple eigenvalues to 

see if dim(𝑁(𝐴 − 𝜆𝐼)) =multiplicity of 𝜆.  

 

det(𝐴 − 𝜆𝐼) = |
1 − 𝜆 1 1

1 1 − 𝜆 1
0 0 𝑘 − 𝜆

| .      Using the bottom row we get: 

                        = (𝑘 − 𝜆) |
1 − 𝜆 1

1 1 − 𝜆
| 

                        = (𝑘 − 𝜆)[(1 − 𝜆)2 − 1] = (𝑘 − 𝜆)(𝜆)(𝜆 − 2). 

So 𝑝(𝜆) splits over ℝ and the eigenvalues are 𝜆 = 𝑘, 0,2.  

 

So the only values of 𝑘 that will give us any multiple eigenvalues would be         

𝑘 = 0,2.  

 

Thus if 𝑘 = 0 in the original matrix then 𝜆 = 0 would be a double eigenvalue. 

If 𝑘 = 2 in the original matrix then 𝜆 = 2 would be a double eigenvalue. 

 

Now check to see if the original matrix is diagonalizable for 𝑘 = 0 and/or 𝑘 = 2.  

 

If 𝑘 = 0, then 𝜆 = 0 is a double eigenvalue and  

                 𝐴 − 0𝐼 = [
1 1 1
1 1 1
0 0 0

]   ⇒  𝑅𝑎𝑛𝑘(𝐴) = 1. 
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Thus we have:      dim(𝑁(𝐴 − 0𝐼)) + 𝑅𝑎𝑛𝑘(𝐴) = dim(ℝ3) = 3 

                              dim(𝑁(𝐴 − 0𝐼)) +        1         = 3   

                               ⇒     dim(𝑁(𝐴 − 0𝐼)) = 2 =multiplicity of 𝜆 = 0. 

Since If 𝑘 = 0, then 𝜆 = 0 is the only multiple eigenvalue, 𝐴 is diagonalizable. 

 

If 𝑘 = 2, then 𝜆 = 2 is a double eigenvalue and  

    𝐴 − 2𝐼 = [
1 1 1
1 1 1
0 0 2

] − [
2 0 0
0 2 0
0 0 2

] = [
−1    1 1
   1 −1 1
   0    0 0

] ;       𝑅𝑎𝑛𝑘(𝐴) = 2.  

                

     Thus we have:        dim(𝑁(𝐴 − 2𝐼)) + 𝑅𝑎𝑛𝑘(𝐴) = dim(ℝ3) = 3 

                                    dim(𝑁(𝐴 − 0𝐼)) +          2     = 3   

                               ⇒     dim(𝑁(𝐴 − 0𝐼)) = 1 ≠multiplicity of 𝜆 = 2.               

      Thus if 𝑘 = 2,  𝐴 is not diagonalizable. 


