Factoring Polynomials over a Field

Our goal is to find zeros of a polynomial. Suppose we can factor a polynomial over a field F, i.e. f(x) = g(x)h(x). Recall that if ϕ_{α} is the evaluation homomorphism:

$$f(\alpha) = \phi_{\alpha}(x) = \phi_{\alpha}(g(x)h(x)) = \phi_{\alpha}(g(x))\phi_{\alpha}(h(x)) = g(\alpha)h(\alpha).$$

Since F is a field it has no 0 divisors, if $0 = f(\alpha) = g(\alpha)h(\alpha)$ then either $g(\alpha) = 0$ or $h(\alpha) = 0$.

So if we can factor a polynomial f(x) = g(x)h(x), then finding zeros of f(x) is reduced to finding zeros of g(x) and h(x).

Theorem: Division Algorithm for F[x]

Let
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$ be elements of $F[x]$,
with a_n and b_m both non-zero, and $m > 0$. Then there are unique
polynomials $q(x)$ and $r(x)$ in $F[x]$ such that:

$$f(x) = q(x)g(x) + r(x)$$

where either r(x) = 0 or the degree of r(x) is less than the degree m of g(x).

Ex. Let $f(x) = x^4 + x^3 - 3x^2 + 2x + 3$ and $g(x) = x^2 - 2x + 2$ in $\mathbb{Z}_5[x]$. Find q(x) and r(x) such that f(x) = g(x)q(x) + r(x)and r(x) is of degree less than g(x) (i.e. less than 2).

$$x^{2} + 3x + 1$$

$$x^{2} - 2x + 2 \overline{\smash{\big|} x^{4} + x^{3} - 3x^{2} + 2x + 3}}$$

$$x^{4} - 2x^{3} + 2x^{2}$$

$$3x^{3} + 2x \qquad (-3 - 2 \equiv 0 \mod 5)$$

$$3x^{3} - x^{2} + x$$

$$(3(2) \equiv 1 \mod 5)$$

$$x^{2} + x + 3$$

$$\underline{x^{2} - 2x + 2}$$

$$3x + 1$$

So
$$q(x) = x^2 + 3x = 1$$
 and $r(x) = 3x + 1$.

Corollary: (Factor Theorem) An element $\alpha \in F$ is a zero of $f(x) \in F[x]$ if, and only if, $x - \alpha$ is a factor of f(x) in F[x].

Proof: Assume that $f(\alpha) = 0$, for $\alpha \in F$.

By the previous theorem we can write:

$$f(x) = (x - \alpha)q(x) + r(x)$$
, where the degree of $r(x)$ is 0.

Thus r(x) =constant. But $f(\alpha) = 0$ implies that:

$$0 = f(\alpha) = (\alpha - \alpha)q(\alpha) + C \Longrightarrow C = 0.$$

Hence $f(x) = (x - \alpha)q(x)$ and $x - \alpha$ is a factor of f(x).

Now assume that $x - \alpha$ is a factor of f(x) in F[x]. Then we have:

$$f(x) = (x - \alpha)q(x).$$

Hence:

$$f(\alpha) = (\alpha - \alpha)q(\alpha) = 0.$$

So
$$\alpha$$
 is a zero of $f(x) \in F[x]$.

Ex. Factor $x^4 + 3x^3 + x^2 + 2x + 3 \in \mathbb{Z}_5[x]$ by finding a root α and then dividing f(x) by $x - \alpha$.

Since there are only 5 elements in \mathbb{Z}_5 we can just test elements until we find a root:

$$\alpha = 0, \quad f(0) = 3 \not\equiv 0 \mod 5$$

$$\alpha = 1, \quad f(1) = 1^4 + 3(1)^3 + +(1)^2 + 2(1) + 3 \equiv 0 \mod 5.$$

So $\alpha = 1$ is a root of $x^4 + 3x^3 + x^2 + 2x + 3.$

$$x^{3} + 4x^{2} + 2$$

$$x - 1 \overline{|x^{4} + 3x^{3} + x^{2} + 2x + 3}$$

$$\underline{x^{4} - x^{3}}$$

$$4x^{3} + x^{2}$$

$$4x^{3} - 4x^{2}$$

$$+2x + 3$$

$$(1 + 4 \equiv 0 \mod 5)$$

$$\underline{2x - 2}$$

$$0$$

$$(3 + 2 \equiv 0 \mod 5)$$

So
$$x^4 + 3x^3 + x^2 + 2x + 3 = (x - 1)(x^3 + 4x^2 + 2)$$
 in $\mathbb{Z}_5[x]$

Now find a root of $g(x) = x^3 + 4x^2 + 2$ by testing elements of \mathbb{Z}_5 . $g(0) = 2 \neq 0$ $g(1) = 1^3 + 4(1)^2 + 2 = 7 \equiv 2 \pmod{5}$ $g(2) = 2^3 + 4(2)^2 + 2 = 26 \equiv 1 \pmod{5}$ $g(3) = 3^3 + 4(3)^2 + 2 = 65 \equiv 0 \pmod{5}$. So 3 is a root.

$$x^{2} + 2x + 1$$

$$x - 3 \overline{\smash{\big|} x^{3} + 4x^{2} + 2}$$

$$\underline{x^{3} - 3x^{2}}$$

$$2x^{2}$$

$$2x^{2}$$

$$\underline{2x^{2} - x}$$

$$x + 2$$

$$\underline{x - 3}$$

$$0$$

So $x^4 + 3x^3 + x^2 + 2x + 3 = (x - 1)(x - 3)(x^2 + 2x + 1) \in \mathbb{Z}_5[x]$. But $x^2 + 2x + 1 = (x + 1)^2$ so we get:

 $x^4 + 3x^3 + x^2 + 2x + 3 = (x - 1)(x - 3)(x + 1)^2 \in \mathbb{Z}_5[x].$

Corollary: A non-zero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field.

This follows from the previous Corollary. If α_1 is a zero of f(x) then:

 $f(x) = (x - \alpha_1)q_1(x);$ where degree of $q_1(x)$ is n - 1.

We can repeat this process at most n - 1 times before the degree of $q_k(x)$ is 0. Thus f(x) can have at most n zeros.

- Corollary: If G is a finite subgroup of the multiplicative group F^* , \cdot of a field F, then G is cyclic. In particular, the multiplicative group of all non-zero elements of a finite field is cyclic.
- Ex. Find all generators of the cyclic multiplicative group of units of \mathbb{Z}_5 .

Recall that if a is a generator of a finite cyclic group G of order n, then the other generators of G are elements of the form a^r where r is relatively prime to n. In this case, G is the multiplicative group $G = \{1, 2, 3, 4\}$ of elements in \mathbb{Z}_5 thus, |G| = 4.

Notice also that 2 is a generator of G since:

 $2^1 = 2$, $2^2 = 4$, $2^3 \equiv 3 \pmod{5}$, $2^4 \equiv 1 \pmod{5}$.

So the other generators of G will be 2^r where r is relatively prime to 4 so $2^3 \equiv 3 \pmod{5}$ is the only other generator of G. So $\{2, 3\}$ are the generators of G.

Def. A non-constant polynomial $f(x) \in F[x]$ is **irreducible over** F or is an **irreducible polynomial in** F[x] if f(x) cannot be expressed as a product g(x)h(x) of two non-constant polynomials g(x) and h(x) in F[x] both lower degree than the degree of f(x). If $f(x) \in F[x]$ is not irreducible over F, then f(x) is **reducible over** F.

Notice that a polynomial can be irreducible over one field but reducible over a larger field.

Ex. $f(x) = x^2 - 3$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} , since:

$$x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3})$$

Ex. Let's show $f(x) = x^3 + x^2 + 3x + 1$ in $\mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 .

Since f(x) is degree 3, If f(x) can be factored in $\mathbb{Z}_5[x]$, then at least one factor is linear. Thus f(x) must have a zero in \mathbb{Z}_5 . However, in \mathbb{Z}_5 :

$$f(0) = 1$$

$$f(1) = 6 \equiv 1 \pmod{5}$$

$$f(2) = 2^3 + 2^2 + 3(2) + 1 = 19 \equiv 4 \pmod{5}$$

$$f(3) = 3^3 + 3^2 + 3(3) + 1 = 46 \equiv 1 \pmod{5}$$

$$f(4) = 4^3 + 4^2 + 3(4) + 1 = 93 \equiv 3 \pmod{5}.$$

Thus f(x) doesn't have a zero in \mathbb{Z}_5 , and so f(x) is irreducible over \mathbb{Z}_5 .

Theorem: Let $f(x) \in F[x]$ and let f(x) be degree 2 or 3. Then f(x) is reducible over F if, and only if, it has a zero in F.

Proof: If f(x) is reducible then:

f(x) = p(x)q(x); where the degrees of p(x), q(x) are each at least 1 and their sum is the degree of f(x) (either 2 or 3).

Thus the degree of p(x) or q(x) is 1.

Hence f(x) has a zero in F.

If f(x) has a zero, α , in F, then we can write:

 $f(x) = (x - \alpha)q(x)$; where the degree of q(x) is at least 1. Hence f(x) is reducible over F.

Notice that if f(x) is degree 4 then it's possible that f(x) is reducible without having a root in F. For example:

$$f(x) = x^4 - 9 = (x^2 - 3)(x^2 + 3)$$

factors over $F = \mathbb{Q}$, but doesn't have a zero in \mathbb{Q} .

Theorem: If $f(x) \in \mathbb{Z}[x]$, then f(x) factors into a product of two polynomials of lower degrees r and s in $\mathbb{Q}[x]$ if, and only if, it has such a factorization of the same degrees r and s in $\mathbb{Z}[x]$.

- Corollary: If $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$, with $a_0 \neq 0$, and if f(x) has a zero in \mathbb{Q} ; then it has a zero m in \mathbb{Z} , and mmust divide a_0 .
- Proof: Since $f(x) \in \mathbb{Z}[x]$ by the previous theorem if it factors in $\mathbb{Q}[x]$, it factors in $\mathbb{Z}[x]$.

Since f(x) has a zero in \mathbb{Q} it has a linear factor in $\mathbb{Q}[x]$. So in $\mathbb{Z}[x]$ we have:

$$f(x) = (x - m)\left(x^{n-1} + \dots + \frac{a_0}{m}\right)$$
 where $\frac{a_0}{m} \in \mathbb{Z}$.

So m divides a_0 .

Ex. Notice that $x^2 - 3$ in $\mathbb{Q}[x]$ factors over \mathbb{Q} if, and only if, it factors over \mathbb{Z} (since the coefficients are in \mathbb{Z}). But in order to factor over \mathbb{Z} , it would have to have a zero in \mathbb{Z} (which it clearly doesn't). Thus, $x^2 - 3$ is irreducible over \mathbb{Q} .

Theorem: Eisenstein Criterion

Let $p \in \mathbb{Z}$ be a prime. Suppose:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x],$$

and $a_n \not\equiv 0 \pmod{p}$, but $a_i \equiv 0 \pmod{p}$ for $i < n_i$
with $a_0 \not\equiv 0 \pmod{p^2}$.

Then f(x) is irreducible over \mathbb{Q} .

Ex. Show that $f(x) = 11x^5 - 3x^4 - 9x^2 - 12$ is irreducible over \mathbb{Q} .

If we take
$$p = 3$$
, notice that $11 \not\equiv 0 \pmod{3}$,
 $-3, -9, -12$ are $\equiv 0 \pmod{3}$, and
 $-12 \not\equiv 0 \pmod{9}$.

Thus by the Eisenstein criterion, f(x) is irreducible over \mathbb{Q} .

Ex. Show that $f(x) = 2x^6 - 7x^5 + 21x^3 - 14x + 14$ is irreducible over \mathbb{Q} .

If we take
$$p = 7$$
, notice that $2 \not\equiv 0 \pmod{7}$,
-7, 21, -14, 14 are $\equiv 0 \pmod{7}$, and
 $14 \not\equiv 0 \pmod{49}$.

Thus by the Eisenstein criterion, f(x) is irreducible over \mathbb{Q} .