Changing Bases- HW Problems

For all of the following problems when you are changing bases use a change of basis matrix P.

- 1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x_1, x_2) = (2x_1 + x_2, x_1 x_2)$.
- a. Find a matrix A which represent T in the standard basis $\{\vec{e}_1, \vec{e}_2\}$ for \mathbb{R}^2 .
- b. Let $v_1=e_1+e_2$ and $v_2=e_1-e_2$. $\{v_1,v_2\}$ is another basis for \mathbb{R}^2 . Find a matrix representation, B, of T with respect to $\{v_1,v_2\}$ (for both \mathbb{R}^2 's).
- c. Let $w_1 = -e_1 + 3e_2$ and $w_2 = 2e_1 e_2$. Find a matrix representation, C, of T with respect to $\{w_1, w_2\}$ (for both \mathbb{R}^2 's).
- d. Show that using the matrices from parts b and c you can find matrix C from matrix B and the change of basis matrix from $\{w_1, w_2\}$ to $\{v_1, v_2\}$.

In problems 2-5 A is a matrix representation of a linear tranformation in the standard basis. Find a matrix representation of the linear transformation in the new basis.

2.
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
; new basis = $\{ < 1, 2 >, < 1, 1 > \}$

3.
$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
; new basis = $\{ < 7, 3 >, < 2, 1 > \}$

4.
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
;

new basis =
$$\{<1,1,1>,<2,1,0>,<-1,1,1>\}$$

You can assume that if
$$P = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 then $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -2 \\ -1 & 2 & -1 \end{bmatrix}$

5.
$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 3 \\ -1 & 2 & 1 \end{bmatrix}$$
;

new basis =
$$\{<0, -2, 1>, <1, 2, 0>, <1, 1, 1>\}$$
.

You can assume that if
$$P = \begin{bmatrix} 0 & 1 & 1 \\ -2 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 then $P^{-1} = \begin{bmatrix} 2 & -1 & -1 \\ 3 & -1 & -2 \\ -2 & 1 & 2 \end{bmatrix}$

6. Suppose $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ by

$$T(a_0 + a_1 x + a_2 x^2) = (a_0 + a_1) + (a_2 - a_1)x + (a_2 - a_0)x^2.$$

- a. Find a matrix representation of T with respect to the standard basis for $P_2(\mathbb{R})$, $\{1, x, x^2\}$.
- b. Find a matrix representation of T with respect to the basis $\{1+x,\ x+x^2,\ 1+x^2\}$.

You can assume that if
$$P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 then $P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$.

c. Find a matrix representation of T with respect to the basis $\{1, 1+x, 1+x+x^2\}$.

You can assume that if
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 then $P^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

- 7. $n \times n$ matrices A and B are similar if there exists an invertible $n \times n$ matrix Q such that $B = Q^{-1}AQ$. Show that if A and B are similar matrices then $\det(A) = \det(B)$.
- 8. Suppose that A, B, and C are $n \times n$ matrices. Show
- a. A is similar to A
- b. If A is similar to B, then B is similar to A.
- c. If A is similar to B, and B is similar to C, then A is similar to C.

Note: a, b, and c mean that similarity of matrices is an equivalence relation.

- 9. Suppose that A is an invertible $n \times n$ matrix and A is similar to B.
- a. Prove that B is invertible.
- b. Prove that A^{-1} is similar to B^{-1} .