The Mean Value Theorem

Def. Let f be a real valued function defined on a metric space X. We say that f has a **local maximum** at a point $p \in X$ if there exists a $\delta > 0$ such that $f(q) \leq f(p)$ for all $q \in X$ with $d_X(p,q) < \delta$.

We say that f has a **local minimum** at a point $p \in X$ if there exists a $\delta > 0$ such that $f(p) \leq f(q)$ for all $q \in X$ with $d_X(p,q) < \delta$.

Theorem: Let $f:[a,b] \to \mathbb{R}$. If f has a local maximum or minimum at a point $p \in (a,b)$, and if f'(p) exists, then f'(p)=0.

Proof: Suppose f'(p) exists and f(p) is a local maximum.

Then by the definition of a local maximum, there exists a $\delta>0$ such that $f(x)\leq f(p)$ for all $x\in X$ with $|x-p|<\delta$.

$$|x - p| < \delta$$

$$-\delta < x - p < \delta$$

$$p - \delta < x < p + \delta.$$

Suppose that we take a point t, $p - \delta < t < p$, then we have:

$$f(t) - f(p) \le 0 \qquad \text{ since } f(x) \le f(p) \text{ for all } x \in X \text{ with } |x - p| < \delta \text{ and}$$

$$t - p < 0 \qquad \text{ since } t < p;$$

So we have:

$$\frac{f(t) - f(p)}{t - p} \ge 0; \ \text{ for } t < p. \ \text{ Thus we can say: } \qquad \lim_{t \to p^-} \frac{f(t) - f(p)}{t - p} \ge 0 \ .$$

Now suppose we take a point , $p < t < p + \delta$.

So we have:

$$f(t) - f(p) \le 0 \qquad \text{since } f(x) \le f(p) \text{ for all } x \in X \text{ with } |x - p| < \delta$$

$$t - p > 0 \qquad \text{since } p < t;$$

So we have:

$$\frac{f(t)-f(p)}{t-p} \leq 0; \ \text{ for } t > p. \ \text{ That gives us: } \qquad \lim_{t \to p^+} \frac{f(t)-f(p)}{t-p} \leq 0.$$

Since f'(p) exists we must have:

$$0 \le \lim_{t \to p^{-}} \frac{f(t) - f(p)}{t - p} = \lim_{t \to p^{+}} \frac{f(t) - f(p)}{t - p} \le 0$$

Thus
$$f'(p) = \lim_{t \to p} \frac{f(t) - f(p)}{t - p} = 0.$$

A similar argument works when p is a local minimum.

The next theorem will be used later to prove L'Hopital's rule.

Theorem (Generalized Mean Value Theorem): If $f,g:[a,b]\to\mathbb{R}$, are continuous on [a,b] and differentiable on (a,b), then there exists a point $c\epsilon(a,b)$ at which:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Note: we could also write this result as:

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$
; This in turn could be written as:

$$\frac{\frac{f(b)-f(a)}{b-a}}{\frac{g(b)-g(a)}{b-a}} = \frac{f'(c)}{g'(c)} \quad \text{i.e.}$$

 $\frac{\text{the average rate of change of f over } [a,b]}{\text{the average rate of change of g over } [a,b]} = \frac{\text{Inst. rate of change of f at c}}{\text{Inst. rate of change of g at c}}.$

Proof: Let h(x) be defined by:

$$h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x); \quad a \le x \le b.$$

h(x) is continuous on [a,b] and differentiable on (a,b) because f(x) and g(x) are.

Notice that h(a) = h(b):

$$h(a) = [f(b) - f(a)]g(a) - [g(b) - g(a)]f(a)$$

$$= f(b)g(a) - g(b)f(a)$$

$$h(b) = [f(b) - f(a)]g(b) - [g(b) - g(a)]f(b)$$

$$= -g(b)f(a) + f(b)g(a).$$

If we can find a point $c \in (a, b)$ where h'(c) = 0 then we would have:

$$0 = h'(c) = [f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c) \quad \text{or}$$
$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c) \quad \text{(which is what we are proving)}.$$

So let's show we can find a point $c \in (a, b)$ where h'(c) = 0.

If h(x) is a constant function then h'(x) = 0 for all $x \in (a, b)$.

If h(x) is not a constant function then there is some point p, a where either <math>h(p) > h(a) or h(p) < h(a).

If h(p) > h(a), let c be a point where h attains its global maximum (we know a continuous function on a compact set attains its absolute maximum and minimum values), a < c < b. This global maximum is also a local maximum because it's an interior point. Thus we know from the previous theorem that since h(x) is differentiable, that h'(c) = 0.

Thus at this point C we have:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

A similar argument works for h(p) < h(a).

The Mean Value Theorem: Let $f: [a,b] \to \mathbb{R}$, be continuous on [a,b] and differentiable on (a,b), then there exists a c, a < c < b such that:

$$\frac{f(b)-f(a)}{b-a} = f'(c).$$

$$(c,f(c))$$

$$(b,f(b))$$
Slope of secant line = $\frac{f(b)-f(a)}{b-a}$
Slope of tangent line = $f'(c)$.

Proof: Let g(x) = x in the generalized mean value theorem. Then we have:

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c)$$
$$[f(b) - f(a)](1) = (b - a)f'(c)$$
$$\frac{f(b) - f(a)}{b - a} = f'(c) ; \quad a < c < b.$$

Note: The Mean Value Theorem gives us a way to bound |f(b) - f(a)| for a function:

$$\frac{f(b)-f(a)}{b-a} = f'(c)$$

$$f(b) - f(a) = f'(c)(b-a)$$

$$|f(b) - f(a)| = |f'(c)||(b-a)|$$

$$inf_{a < x < b}|f'(x)||b-a| \le |f(b) - f(a)| \le sup_{a < x < b}|f'(x)||b-a|.$$

Ex. Prove $|\sin(b) - \sin(a)| \le |b - a|$ for all real values of a, b.

Apply the M.V.T. to [a, b], for any a, b, and the function $f(x) = \sin(x)$.

 $f(x) = \sin(x)$ is continuous on [a, b] because it's continuous everywhere. It's differentiable on (a, b) because it's differentiable everywhere.

By the mean value theorem there exists a c, a < c < b such that:

$$\frac{\sin(b) - \sin(a)}{b - a} = f'(c) = \cos(c) \text{ or we can write:}$$

$$\sin(b) - \sin(a) = (\cos(c))(b - a).$$

Now take absolute values:

$$|\sin(b)-\sin(a)|=|\cos(c)||b-a|$$
; now use the fact that $|\cos c|\leq 1$
 $|\sin(b)-\sin(a)|=|\cos(c)||b-a|\leq |b-a|$ so we have: $|\sin(b)-\sin(a)|\leq |b-a|$ for all real values of a,b .

Ex. Use the M. V. Theorem to prove that
$$\frac{1}{2} + \left(\frac{\sqrt{2}}{60}\right)\pi < \sin\left(\frac{\pi}{5}\right) < \frac{1}{2} + \left(\frac{\sqrt{3}}{60}\right)\pi$$
.

Apply the mean value theorem to the function $f(x) = \sin(x)$, on $[\frac{\pi}{6}, \frac{\pi}{5}]$.

Here we want to use an interval that includes $\frac{\pi}{5}$ as one endpoint and the other endpoint being a point where we "know" the value of $\sin(x)$, like $\sin\left(\frac{\pi}{6}\right)$. We could have also used $\left[\frac{\pi}{5}, \frac{\pi}{4}\right]$.

v = cosx

As mentioned in the previous example, $f(x) = \sin(x)$ satisfies the conditions of the mean value theorem on this interval.

By the M.V.T. we know there exists a c, $\frac{\pi}{6} < c < \frac{\pi}{5}$ such that:

$$\frac{\sin\frac{\pi}{5} - \frac{1}{2}}{\frac{\pi}{30}} = \cos(c) \qquad \frac{\pi}{6} < c < \frac{\pi}{5};$$

since cos(x) is decreasing on $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

$$\frac{\sqrt{3}}{2} = \cos\frac{\pi}{6} > \cos(c) > \cos\frac{\pi}{5} > \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2};$$

$$\frac{\pi}{6} = \frac{\pi}{5} = \frac{\pi}{4}$$

$$\frac{\sqrt{3}}{2} > \frac{\sin\frac{\pi}{5} - \frac{1}{2}}{\frac{\pi}{30}} > \frac{\sqrt{2}}{2}$$
 now let's solve the inequality for $\sin\frac{\pi}{5}$

$$\frac{\sqrt{3}}{2} \left(\frac{\pi}{30} \right) > \sin \left(\frac{\pi}{5} \right) - \frac{1}{2} > \frac{\sqrt{2}}{2} \left(\frac{\pi}{30} \right)$$

$$\frac{1}{2} + \frac{\sqrt{3}}{2} \left(\frac{\pi}{30} \right) > \sin(\frac{\pi}{5}) > \frac{1}{2} + \frac{\sqrt{2}}{2} \left(\frac{\pi}{30} \right)$$
 or

$$\frac{1}{2} + \left(\frac{\sqrt{2}}{60}\right)\pi < \sin\left(\frac{\pi}{5}\right) < \frac{1}{2} + \left(\frac{\sqrt{3}}{60}\right)\pi.$$

Ex. Let $f(x) = tan^{-1}x$ and apply the M.V.T. to [a,b]; a,b>0 to prove:

a.
$$\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2} .$$

b. Apply part "a" to $\left[1, \frac{4}{3}\right]$ to get the inequality:

$$\frac{\pi}{4} + \frac{3}{25} < tan^{-1} \left(\frac{4}{3}\right) < \frac{\pi}{4} + \frac{1}{6}$$

a. $f(x)=tan^{-1}x$ is continuous everywhere and differentiable everywhere and thus it satisfies the M.V. T. on any interval [a,b].

By the M.V.T. there exists a c , $0 < \alpha < c < b$ such that:

$$\frac{tan^{-1}b - tan^{-1}a}{b - a} = \frac{1}{1 + c^2}; \quad 0 < a < c < b \quad \text{(since } f'(x) = \frac{1}{1 + x^2}\text{)}.$$

Since 0 < a < c < b > we know that $a^2 < c^2 < b^2 \>$ and $1+a^2 < 1+c^2 < 1+b^2$,

and finally
$$\frac{1}{1+a^2} > \frac{1}{1+c^2} > \frac{1}{1+b^2}$$
.

Now since $\frac{tan^{-1}b-tan^{-1}a}{b-a}=\frac{1}{1+c^2}$, replacing in the above inequality we get:

$$\frac{1}{1+a^2} > \frac{tan^{-1}b - tan^{-1}a}{b-a} > \frac{1}{1+b^2}.$$

Now multiply through by (b-a), which is positive because b>a:

$$\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2}.$$

b. Applying this inequality when a=1 and $b=\frac{4}{3}$

$$\frac{\frac{4}{3}-1}{1+(\frac{4}{3})^2} < tan^{-1}(\frac{4}{3}) - tan^{-1}1 < \frac{\frac{4}{3}-1}{1+(1)^2}$$

$$\frac{\frac{1}{3}}{\frac{25}{9}} < tan^{-1}(\frac{4}{3}) - \frac{\pi}{4} < \frac{1}{6}$$

$$\frac{\pi}{4} + \frac{3}{25} < tan^{-1}(\frac{4}{3}) < \frac{\pi}{4} + \frac{1}{6}$$
.

Ex. Prove that $e^x > 1 + x$ for x > 0.

Apply the M.V.T. to the function $f(x) = e^x$ on the interval [0, x].

f(x) satisfies the M.V.T. because it's continuous everywhere and differentiable everywhere.

By the M.V.T. we know that there is a c, 0 < c < x such that

$$\frac{e^x - e^0}{x - 0} = f'(c) = e^c;$$
 $0 < c < x$ or

$$\frac{e^x - 1}{x} = e^c; \qquad 0 < c < x.$$

Since 0 < c and $f(x) = e^x$ is an increasing function $e^0 = 1 < e^c$. Thus we have:

$$\frac{e^{x}-1}{x}=e^{c}>1$$
; Now solve this inequality for e^{x} .

$$e^{x} - 1 > x$$

$$e^x > 1 + x$$
 for $x > 0$.

Ex. Suppose f'(x) exists on (a,b) and $\sup_{a < x < b} |f'(x)| \le M$, show that f(x) is uniformly continuous on (a,b).

Let $x, y \in (a, b)$ then by the M.V.T. we have:

$$|f(x) - f(y)| \le M|x - y|.$$

So if we choose $\delta = \epsilon/M$ then:

$$|f(x) - f(y)| \le M|x - y| < M(\delta) = M\left(\frac{\epsilon}{M}\right) = \epsilon$$

and f is uniformly continuous on (a, b).

Def. A function $f: \mathbb{R} \to \mathbb{R}$ is called **monotonically increasing** if p > q implies that $f(p) \ge f(q)$. f is called **monotonically decreasing** if if p > q implies that

Theorem: Supose f is differentiable in (a, b):

a. If $f'(x) \ge 0$ for all $x \in (a,b)$ then f is monotonically increasing.

b. If f'(x) = 0 for all $x \in (a, b)$ then f is a constant function

c. If $f'(x) \leq 0$ for all $x \in (a, b)$ then f is monotonically decreasing.

Proof: Take any two point $p, q \in (a, b)$ with p > q. Since f is differentiable in (a, b), it is also differentiable in (q, p) and continuous in [q, p] (if f is differentiable at a point t, then it is continuous at t) thus f satisfies the conditions of the Mean Value Theorem on [q, p].

Thus we know:

$$f(p) - f(q) = f'(c)(p - q)$$
 where $q < c < p$.

- a. If $f'(x) \ge 0$ for all $x \in (a,b)$ then $f'(c) \ge 0$, and thus $f'(c)(p-q) \ge 0$; Hence $f(p)-f(q)=f'(c)(p-q)\ge 0$ and $f(p)\ge f(q)$. So f is monotonically increasing.
- b. If f'(x)=0 for all $x \in (a,b)$ then f'(c)=0, and thus f(p)-f(q)=0; or f(p)=f(q). So f is a constant function.
- c. If $f'(x) \leq 0$ for all $x \in (a,b)$ then $f'(c) \leq 0$, and thus $f'(c)(p-q) \leq 0$; Hence $f(p) - f(q) = f'(c)(p-q) \leq 0$ and $f(p) \leq f(q)$. So f is monotonically decreasing.

Ex. Suppose f is differentiable everywhere and f(2)=6 and $|f'(x)|\leq 4$, for all values of x. show that $-6\leq f(5)\leq 18$ and $-2\leq f(0)\leq 14$.

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any closed interval [a, b]. If we apply the M.V.T. to the interval [2,5] we get:

$$f(5) - f(2) = f'(c)(5-2)$$
 where $2 < c < 5$;

Since f(2) = 6, we have:

$$f(5) - 6 = (f'(c))(3).$$

Since $|f'(x)| \le 4$, we know that $-4 \le f'(x) \le 4$ for all x, so $-4 \le f'(c) \le 4$

and
$$-12 \le (f'(c))(3) \le 12$$
.

Since f(5) - 6 = (f'(c))(3) we have:

$$-12 \le f(5) - 6 \le 12$$
 or $-6 \le f(5) \le 18$.

Now let's apply the M.V.T. to the interval [0,2]

$$f(2) - f(0) = f'(c)(2 - 0)$$
 where $0 < c < 2$;

Since f(2) = 6, we have:

$$6 - f(0) = (f'(c))(2).$$

Since $|f'(x)| \le 4$, we know that $-4 \le f'(x) \le 4$ for all x, so $-4 \le f'(c) \le 4$

and
$$-8 \le (f'(c))(2) \le 8$$
.

Since 6 - f(0) = (f'(c))(2) we have:

$$-8 \le 6 - f(0) \le 8$$

$$-14 \le -f(0) \le 2$$

$$14 \ge f(0) \ge -2.$$

In fact, if f(x) satisfies the Mean Value Theorem on an interval, and $L \le f'(x) \le K$ on that interval then we have:

$$L \le \frac{f(x) - f(a)}{x - a} = f'(c) \le K.$$

Solving this inequality for f(x) we get:

$$f(a) + L(x - a) \le f(x) \le f(a) + K(x - a)$$
 if $x \ge a$

$$f(a) + L(x - a) \ge f(x) \ge f(a) + K(x - a) \quad \text{if } x \le a.$$

Which means the values of f(x) can't go outside the lines

$$y = f(a) + L(x - a)$$
 and $y = f(a) + K(x - a)$

on the interval.

Ex. Suppose f is differentiable everywhere and f(1) = 7 and $f'(x) \ge -3$, for all values of x. Show that $f(6) \ge -8$. Can we find an upper bound on f(6)?

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any closed interval [a, b]. If we apply the M.V.T. to the interval [1,6] we get:

$$f(6) - f(1) = f'(c)(6-1)$$
 where $1 < c < 6$.

Since f(1) = 7, we have:

$$f(6) - 7 = f'(c)(5)$$
 where $1 < c < 6$.

Since $f'(x) \ge -3$ for all values of x, we know that $f'(c) \ge -3$.

Thus we have:

$$f(6) - 7 = f'(c)(5) \ge (-3)(5) = -15$$
; now add 7 to both sides $f(6) > -8$.

We cannot find an upper bound on f(6) because we have no upper bound on f'(c).

Theorem (L'Hopital's rule) Suppose f, g are real valued differentiable functions on (a,b), and $g'(x) \neq 0$ for all $x \in (a,b)$, where $-\infty \leq a,b \leq +\infty$. Suppose $p \in (a,b)$ (so p could be either $+\infty$ or $-\infty$) and $\lim_{x \to p} \frac{f'(x)}{g'(x)} = A$.

If
$$\lim_{x\to p} f(x) = 0$$
, $\lim_{x\to p} g(x) = 0$, or

If
$$\lim_{x \to p} f(x) = \pm \infty$$
, $\lim_{x \to p} g(x) = \pm \infty$

Then
$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)} = A.$$

Proof: We'll just prove the case where $\lim_{x\to p}f(x)=\lim_{x\to p}g(x)=0$ and $p\neq\pm\infty$.

Since $\lim_{x\to p} f(x) = \lim_{x\to p} g(x) = 0$ and both f, g are continuous at x=p,

$$f(p) = g(p) = 0.$$

Choose an x > p. Since f, g are differentiable everywhere, they satisfy the Extended Mean Value Theore on [p, x], so we can conclude that:

$$\frac{f(x)-f(p)}{g(x)-g(p)} = \frac{f'(c)}{g'(c)} \quad \text{for } p < c < x.$$

Since f(p) = g(p) = 0 we have:

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)} \quad \text{for } p < c < x.$$

Now take the limit from the right:

$$\lim_{x \to p^+} \frac{f(x)}{g(x)} = \lim_{x \to p^+} \frac{f'(c)}{g'(c)} = \lim_{x \to p^+} \frac{f'(x)}{g'(x)}.$$

Now Choose an x < p. Since f, g are differentiable everywhere, they satisfy the Extended Mean Value Theore on [x, p], so we can conclude that:

$$\frac{f(p)-f(x)}{g(p)-g(x)} = \frac{f'(c)}{g'(c)} \quad \text{for } x < c < p.$$

Since f(p) = g(p) = 0 we have:

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)} \quad \text{for } x < c < p.$$

Now take the limit from the left:

$$\lim_{x \to p^{-}} \frac{f(x)}{g(x)} = \lim_{x \to p^{-}} \frac{f'(c)}{g'(c)} = \lim_{x \to p^{-}} \frac{f'(x)}{g'(x)}.$$

Since, by assumption $\lim_{x\to p} \frac{f'(x)}{g'(x)} = A$, the right hand and left hand limits must be the same (for both $\frac{f'(x)}{g'(x)}$ and $\frac{f(x)}{g(x)}$).

Thus we have:
$$\lim_{x \to p} \frac{f(x)}{g(x)} = \lim_{x \to p} \frac{f'(x)}{g'(x)} = A.$$

Ex. Find $\lim_{x\to 2} \frac{x^2-2x}{\sin(x-2)}$.

 $\lim_{x\to 2}(x^2-2x)=0, \quad \text{and} \quad \lim_{x\to 2}\sin(x-2)=0, \text{ so by L'Hopital's rule:}$

$$\lim_{x \to 2} \frac{x^2 - 2x}{\sin(x - 2)} = \lim_{x \to 2} \frac{2x - 2}{\cos(x - 2)} = \frac{2}{1} = 2.$$