The Mean Value Theorem

Def. Let f be a real valued function defined on a metric space X. We say that f
has a local maximum at a point peX if there exists a § > 0 such that

f(q) < f(p) forall gex with dx(p,q) < 6.

We say that f has a local minimum at a point peX if there exists a 6 > 0 such

that f(p) < f(q) forall geX with dx(p,q) < 6.
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Theorem: Let f:[a, b] = R. If f has a local maximum or minimum at a point

pe(a, b), and if f'(p) exists, then f'(p) = 0.

Proof: Suppose f'(p) exists and f (p) is a local maximum.
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Then by the definition of a local maximum, there exists a & > 0 such that

f(x) < f(p) forall xeX with |x — p| < 6.



lx —p| <6
—-0<x—p<$é6

p—06<x<p++6.

Suppose that we take a pointt, p — § < t < p, then we have:

fOO-—f@ <0 since f(x) < f(p) forall xeX with |x — p| < § and

t—p<O0 sincet < p;
So we have:
IO)-1@) > 0; fort < p. Thuswe can say: lim UORIC) > 0.
t—p t-op~ t—p

Now suppose we take a point, p <t <p + 6.

So we have:

f)—fp) <0 since f(x) < f(p) forall xeX with |[x —p| < §
t—p>0 sincep < t;

So we have:
I0-/@) < 0; fort > p. Thatgives us: lim [O-7@) <0.
t—-p topt t—-p

Since f'(p) exists we must have:

t-p~ t-p topt t-p



t-p t-p

Thus f'(p

A similar argument works when p is a local minimum.

The next theorem will be used later to prove L'Hopital’s rule.

Theorem (Generalized Mean Value Theorem): If f, g: [a, b] = R, are
continuous on [a, b] and differentiable on (a, b), then there exists a point

ce(a, b) at which:

[f(b) = f(@)]g'(c) = [g(b) — g(@)]f' ().

Note: we could also write this result as:

.J;EZ;:QEZ; = 2,22 ; This in turn could be written as:

fb)-f(a)

b—a _ f’(C) .
gb)-g(a) g’(c) I-€
b—a

the average rate of change of f over [a,b] _ Inst. rate of change of f atc

the average rate of change of g over [a,b] " Inst. rate of changeof g atc

Proof: Let h(x) be defined by:

h(x) = [f(b) — f(@]g(x) = [g(b) — g(@)]f (x);

h(x) is continuous on [a, b] and differentiable on (a, b) because f(x) and g(x)

are.

a<x<bh.



Notice that h(a) = h(b):

h(a) = [f(b) — f(a)lg(a) — [g(b) — g(@)]f (a)
= f(b)g(a) — g(b)f(a)

h(b) = [f(b) — f(a)lg(b) — [9(b) — g(a)]f (D)
=—gb)f(a) + fb)g(a).

If we can find a point ce(a, b) where h'(¢) = 0 then we would have:

0="h'(c)=[f(b) — f@)]g'(c) —[g(b) — g(a@)]f'(c) or
[f(b) — f(a)]lg'(c) = [g(b) — g(a)]f'(c) (whichiswhat we are proving).

So let’s show we can find a point ce(a, b) where h'(c¢) = 0.
If h(x) is a constant function then h'(x) = 0 for all xe(a, b).

If h(x) is not a constant function then there is some point p, a < p < b where
either h(p) > h(a) or h(p) < h(a).

If h(p) > h(a), let ¢ be a point where h attains its global maximum (we know
a continuous function on a compact set attains its absolute maximum and

minimum values), @ < ¢ < b. This global maximum is also a local maximum
because it’s an interior point. Thus we know from the previous theorem that

since h(x) is differentiable, that h'(c¢) = 0.

Thus at this point ¢ we have:

[f(b) = f(a)lg'(c) = [g(b) — g(a)]f"(c).

A similar argument works for h(p) < h(a).



The Mean Value Theorem: Let f: [a, b] = R, be continuous on [a, b] and
differentiable on (a, b), then there exists a ¢, @ < ¢ < b such that:

(. f(e)_—

N Y [0)

- Slope of secant line= —f(b;:i(“)

Slope of tangent line= f'(c).

a c b

Proof: Let g(x) = X in the generalized mean value theorem. Then we have:
[f(b) — f(a)]g'(c) = [g(b) — g(a)]f'(c)
[f(b) — f(@)](1) = (b —a)f'(c)

f—(b;:g(a) =f'(c); a<c<bh.

Note: The Mean Value Theorem gives us a way to bound |f(b) — f(a)| for a
function:

f(b)_f(a) — fl(c)

b—a

fb)—f(a)=f"(c)b—a)
If(b) — f(a@)] = If' (DI —a)
infocx<plf b —al < |f(b) — f(a)| < supgex<plf (X)||b — al.



Ex. Prove | sin(b) — sin(a) | < |b — a| for all real values of a, b.

Apply the M.V.T. to [a, b], for any a, b, and the function f (x) = sin(x).

f(x) = sin(x) is continuous on [a, b] because it's continuous everywhere. It’s
differentiable on (a, b) because it’s differentiable everywhere.

By the mean value theorem there existsa ¢, @ < ¢ < b such that:

sin(b)-sin(a)
b—a

sin(b) — sin(a) = (cos(c))(b — a).

= f’(C) = COS(C) or we can write:

Now take absolute values:
|sin(b) — sin(a)| = |cos(c)||b — a]; now usethe factthat |cosc| <1
|sin(b) — sin(a)| = |cos(c)||b —a| < |b—a|  sowe have:

| sin(b) — sin(a) | < |b — a| for all real values of a, b.

1 2 : 1 3
Ex. Use the M. V. Theorem to prove that > + (g) m < sin (g) < 2 + (g)ﬂ.

Apply the mean value theorem to the function f(x) = sin(x), on [%,%].

YA
Here we want to use an interval that includes S asone endpoint and the other

endpoint being a point where we “know” the value of sin(x), like sin (%) We

T T
could have also used [E’ Z]'



As mentioned in the previous example, f(x) = sin(x) satisfies the conditions

of the mean value theorem on this interval.

By the M.V.T. we know there existsa C, % <c< % such that:

sing—sing ,
n—Ezf(C)=COS(C), -<c<cZ y = cosx
5 6
sinf—2
22 — cos(c) —<c<%;
30
since cos(x) is decreasing on [E %]
V3 T /i T V2
7—cos6>cos(c)>coss>cos4—2, 2N
Y T T
6 5 4
o1
V3 Sin——- V2 '
~ > —72> - now let’s solve the inequality for Sln%
30
V3 (m . (T 1_ V2, @
—(—) > sm(—) —=>—(=
2 \30 5 2 2 30
1, V3(m \/_ s
—+—(—)> n(—)> +—= (=) or
2 2 \30 30

§+(\£)n<sm( )< +(

N



Ex. Let f(x) = tan™1x andapply the M.V.T. to [a, b]; a, b > O to prove:

b—a _ _ b—a
<tan~ b —tan~la < .
1+b2 1+a?

wun

4

b. Apply part “a” to [1, 5] to get the inequality:
T 3 _ 4 T 1
- +—=<tan 1(—) <=4-.
4 25 3 4 6

a. f(x) =tan"1x iscontinuous everywhere and differentiable everywhere
and thus it satisfies the M.V. T. on any interval [a, b].

By the M.V.T. there existsa ¢, 0 < a < ¢ < b such that:

tan~'b—tanla 1 _ , 1
P = ez’ 0<a<c<b (since f'(x)= )
Since0 < a < ¢ < b weknow that a? < ¢? < b? and
1+a’°<1+c?<1+5b?
1 1 1
and finall > .
y 1+a? 1+c2 1+b?2
Now < tan~'b—tan~la 1 lacing in the above it .
ow since = , replacing in the above inequality we get:
b—a 1+c2’ P 8 quality we g
1 tan~1b—tan~1la 1

1+a? b—a 1+b2 "’



Now multiply through by (b — a), which is positive because b > a:

b—a

b—-a - -
- <tan"'bh —tan"ta < —;
1+b 1+a

4
b. Applying this inequality whena = 1 and b = 3

4 4
5~ 14 _ pan-11 < 2
10 <tan™ (7)) —tan™"1 < )

1
3 1A _ 1T _1
= < tan (3) . <z

oD

3 4 1
St <tanl(G) <> 4=,
4" 25 3 T4 6

Ex. Prove that e* > 1 + x forx > 0.

Apply the M.V.T. to the function f (x) = e* on the interval [0, x].

f(x) satisfies the M.V.T. because it’s continuous everywhere and differentiable

everywhere.
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By the M.V.T. we know that thereisac, 0 < ¢ < x such that

e

X_p0
o =f’(C)=eC; 0<c<x or

e¥—-1
= e¢; 0<c<x.

X

Since 0 < c and f(x) = e”* is an increasing function e =1< e Thuswe
have:

e*—1
. =e‘ > 1; Now solve this inequality for e*.
e*—1>x

e*>1+x forx > 0.

Ex. Suppose f'(x) exists on (a,b) and sup |f'(x)| < M, show that f(x) is
a<x<b

uniformly continuous on (a, b).

Let x,y € (a, b) then by the M.V.T. we have:

If ) = fFI < Mlx —yl.
So if we choose § = €/M then:

€

If () = fF)] < Mlx —y| < M(6) =M(M) — ¢

and f is uniformly continuous on (a, b).
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Def. A function f: R — R is called monotonically increasing if p > q implies that

f() = f(q). f iscalled monotonically decreasing if if p > q implies that

f) = f(@).

Monotonically

decreasing

btonically Y
asing  /

Theorem: Supose f is differentiable in (a, b):

a. If f'(x) = 0 for all xe(a, b) then f is monotonically increasing.

b. If f'(x) = 0 for all xe(a, b) then f is a constant function

c. If f'(x) < 0 forall xe(a,b) then f is monotonically decreasing.

Proof: Take any two point p,qe(a, b) with p > q. Since f is differentiable in

(a, b), itis also differentiable in (g, p) and continuous in [q, p] (if f is

differentiable at a point t, then it is continuous at t) thus f satisfies the

conditions of the Mean Value Theorem on [q, p]-

Thus we know:

f@—f@ =f"(c)(p—q) whereq <c <p.
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a. If f'(x) = 0 forall xe(a, b) then f'(c) = 0,and thus f'(c)(p — q) = 0;

Hence f(p) — f(q) = f'(c)(p —q) = 0and f(p) = f(q).

So f is monotonically increasing.

b. If f'(x) = 0 forall xe(a,b) then f'(c) = 0,and thus f(p) — f(q) = 0;

or f(p) = f(q). So f isa constant function.

c. Iff'(x) < 0forallxe(a,b)then f'(c) <0,andthus f'(c)(p —q) < 0;
Hence f(p) — f(q) = f'(c)(p —q) < 0and f(p) < (.

So f is monotonically decreasing.

Ex. Suppose f is differentiable everywhere and f(2) = 6 and |f'(x)| < 4, for
all values of x. show that —6 < f(5) < 18 and -2 < f(0) < 14.

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any
closed interval [a, b]. If we apply the M.V.T. to the interval [2,5] we get:

fGB)—fR)=f"(c)(5—2) where 2<c<5;
Since f(2) = 6, we have:

f(5) =6=(f(c)(3).

Since |f'(x)| < 4, we know that —4 < f'(x) < 4 forall x, so
—4<f'(c)<4

and —12 < (f'(c)(3) <12.



Since f(5) — 6 = (f'(c))(3) we have:

—12<f(5)—-6<12 or
—6 < f(5) <18.

Now let’s apply the M.V.T. to the interval [0,2]

fR)—fO)=f"(c)(2—0) where 0 <c < 2;

Since f(2) = 6, we have:

6 —f(0) = (f'(eN@.

Since |f'(x)| < 4, we knowthat —4 < f'(x) < 4 forall x, so
—4<flc)<4

and —8 < (f'(c))(2) < 8.
since 6 — £(0) = (f'(c))(2) we have:
—8<6—f(0)<8
~14 < —f(0) < 2

14 > f(0) = —2.

13
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In fact, if f(x) satisfies the Mean Value Theorem on an interval, and
L < f'(x) < K on that interval then we have:

L <fOTT@ _ ooy <

Solving this inequality for f (x) we get:
f@W+Llx—a)<fx)<f@+Kx—-—a) ifx=>a

f@+Lx—a)=fx)=f(@)+K(x—a) ifx<a.

Which means the values of f(x) can’t go outside the lines

y=f(a)+L(x—a) and y=f(a) +K(x —a)

on the interval.

. SN S y=f@+Kx-a)

| TS - yFf @)
T T = el —T

a

y=fla) HL(x—a)
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Ex. Suppose f is differentiable everywhere and f(l) = 7 and f’(x) > —3, for
all values of x. Show that f(6) = —8. Can we find an upper bound on f(6)?

Since f is differentiable everywhere it satisfies the Mean Value Theorem on any
closed interval [a, b]. If we apply the M.V.T. to the interval [1,6] we get:

f6)—f(1)=f"(c)(6—1) where 1 <c<6.

Since f(1) = 7, we have:

f(6) —7=Ff"(c)(5) wherel <c<6.

Since f'(x) = —3 for all values of x, we know that f'(c) = —3.
Thus we have:

f(6)—7=f"(c)(5) = (—3)(5) = —15; now add 7 to both sides
f(6) = -8.

We cannot find an upper bound on f (6) because we have no upper bound on

f'(©).
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Theorem (L’Hopital’s rule) Suppose f, g are real valued differentiable functions

on (a, b),and g'(x) # O for all xe(a, b), where —c0 < a,b < +00. Suppose

pe(a, b) (so p could be either +0 or —) and lim f,(x) = A.
x-p g (%)

If lim f(x) =0, limg(x) =0, or
X—p xX—p

If lim f(x) = +oo, lim g(x) =+
X-p X-p

f@ _ i £ _ g

Then lim——= = lim == =
x->pgd(x)  x-pg (x)

Proof: We'll just prove the case where lim f(x) = lim g(x) = 0 and
X—p X—p
p * too.

Since lim f(x) = lim g(x) = 0 and both f, g are continuous at x = p,
X—p X—p

f(p) =g@) =0.

Choose an X > p. Since f, g are differentiable everywhere, they satisfy the

Extended Mean Value Theore on [p, x], so we can conclude that:

fO-f® _ f'(©
gx)-g) g'(c)

forp <c <x.

Since f(p) = g(p) = 0 we have:

fx) _ f'(c)
gx) g’ (o

forp < ¢ < X.
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Now take the limit from the right:

lim A lim f,(c) = lim f,(x).
x-pt g(x)  x-ptg'(c) x-ptg'(x)

Now Choose an X < p. Since f, g are differentiable everywhere, they satisfy the

Extended Mean Value Theore on [x, p], so we can conclude that:

f®-fx) _ f'©
gp)-gx) g'(c)

forx <c <p.

Since f(p) = g(p) = 0 we have:

f@ _ f'©
gx) g' (o

forx <c <p.

Now take the limit from the left:

@ 'O v '@
lim 2% = |im 29 = |jm L2
Ao g0 xop-'(©)  xop- g’ (%)

e _ . -
Since, by assumption lim = A, the right hand and left hand limits must

x-p g’ (x)

be the same (for both () and (x))'

g’ (x) g(x)

Thus we have: lim —= 1) = lim r (x) = A.
x-pg(x) x-pg'(x)




X. Fn x—2 sin(x—2) °

lim(x? —2x) =0,
x—2

2

xX4—2x

and lim sin(x — 2) = 0, so by L’'Hopital’s rule:
X2

. 2x—2 2
—hmx——I=2.

x1—>2 sin(x—2) T x52 cos(x—2) o
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