Def. A mapping $f: E \subseteq X \to \mathbb{R}^k$ is said to be **bounded** if there exists a real number M such that $|f(x)| \leq M$ for all $x \in E$.

Ex. $f(x, y) = x^2 + y^2$ is bounded for $E = \{(x, y) | |x| < 10, |y| \le 5\}$ since $|f(x, y)| \le 100 + 25 = 125 = M$; But it is not bounded on $E = \mathbb{R}^2$.

Ex.
$$f(x, y) = e^{-(x^2 + y^2)}$$
 is bounded for $E = \mathbb{R}^2$ since
 $|f(x, y)| = |e^{-(x^2 + y^2)}| \le 1 = M.$

Theorem: Suppose $f: X \to Y$ is a continuous mapping of a compact metric space X into a metric space Y then f(X) is compact.

Proof: Let $\{V_{\alpha}\}$ be an open cover of f(X).

Y

Since f is continuous, $f^{-1}(V_{\alpha})$, is an open set in X (why?) and $X \subseteq \bigcup_{\alpha} f^{-1}(V_{\alpha})$.

Thus $\{f^{-1}(V_{\alpha})\}$ is an open cover of X.

Since X is compact there exists a finite subcover: $X \subseteq \bigcup_{i=1}^{n} f^{-1}(W_i)$, where $\{W_i\} \subseteq \{V_{\alpha}\}$. Since $f(f^{-1}(E)) \subseteq E$; for $E \subseteq Y$, (For example, if $f(x) = x^2$ and E = (-1,1); then $f^{-1}(-1,1) = (-1,1)$ and $f(f^{-1}(-1,1)) = [0,1) \subseteq (-1,1)$.)

$$f(X) \subseteq \bigcup_{i=1}^{n} f(f^{-1}(W_i)) \subseteq \bigcup_{i=1}^{n} W_i.$$

So $\{W_i\}$ is a finite subcover of f(X), and f(X) is compact.

Theorem: Suppose f is a continuous function on a compact metric space X into \mathbb{R} , and $M = sup_{p \in X} f(p)$ and $m = inf_{p \in X} f(p)$, then there exist points $p, q \in X$ such that f(p) = M and f(q) = m.

Proof: Since f is continuous and X is compact, f(X) is a compact subset of \mathbb{R} . By the Heine-Borel theorem we know that any compact subset of \mathbb{R} (or \mathbb{R}^n) is closed and bounded.

Hence f(X) contains $M = sup_{p \in X} f(p)$ and $m = inf_{p \in X} f(p)$. For suppose $M = sup_{p \in X} f(p)$ and $M \notin f(X)$. Then for every h > 0 there exists a point $x \in f(X)$ such that M - h < x < M.

Otherwise, M - h would be an upper bound for f(X) and M wouldn't be the least upper bound.

But this means that M is a limit point of f(X). Since f(X) is closed $M \in f(X)$.

A similar argument works for the infimum.

This gives us the theorem from first year Calculus that a continuous function on a closed, bounded interval (i.e. a compact subset of \mathbb{R}) takes on its maximum and minimum values.

Ex. Let $f(x) = x^2$; and X = [-1,1].

f(X) = [0,1]; minimum value=0, maximum value=1. (In red below)

If X = (-1,1); i.e. X is not compact notice that:

f(X) = [0,1); f takes on its minimum value but not its maximum value. (In blue below)

If X = (0,1), then f(X) = (0,1) and f doesn't take on either its minimum or maximum values. (In green below)

Note: A continuous function on a non-compact set <u>can</u> take on its minimum and/or maximum values, but it does not have to. A continuous function on a compact set <u>must</u> take on its maximum and minimum values.

Ex. Let f(x) = sinx; and $X = (0,2\pi)$. Then f(X) = [-1,1]. So f takes on its maximum and minimum values even though $X = (0,2\pi)$ is not compact.

Def. Let $f: X \to Y$; X, Y are metric spaces. We say f is **uniformly continuous** on X if for every $\epsilon > 0$ there exists a $\delta > 0$ for all $p, q \in X$ such that if $d_X(p,q) < \delta$ then $d_Y(f(p), f(q)) < \epsilon$.

For any interval $I \subseteq \mathbb{R}$ with $f: I \subseteq \mathbb{R} \to \mathbb{R}$, f is uniformly continuous on I means for every $\epsilon > 0$ there exists a $\delta > 0$ for all $x, a \in I$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$.

Notice the difference between continuity and uniform continuity:

1. For uniform continuity, δ does not depend on the point in X you are at. For continuity, the δ can depend on which point in X you are at (with both continuity and uniform continuity, δ does depend on ϵ).

2. Uniform continuity is a property of a set of points, not a single point. Continuity is a property at a point and a set of points.

3. If a function is uniformly continuous on a set *X*, then it is also continuous on *X*. However, if a function is continuous on a set *X* it may, or may not be, uniformly continuous on *X*.

Ex. Let $f(x) = \frac{1}{x}$; 0 < x < 1. Show that f(x) is continuous on (0,1) but not uniformly continuous.

To show $f(x) = \frac{1}{x}$ is continuous at any point $a \in (0,1)$ we must show that given any $\epsilon > 0$ we can find a $\delta > 0$ such that if $|x - a| < \delta$ then $\left|\frac{1}{x} - \frac{1}{a}\right| < \epsilon$. Note that δ can depend on both the value of ϵ and the value of "a".

Let's work backward from the ϵ statement to get the δ statement.

$$\left|\frac{1}{x} - \frac{1}{a}\right| = \left|\frac{a-x}{ax}\right| = \frac{1}{|ax|}|x-a|.$$

We need an upper bound on $\frac{1}{|ax|} = \frac{1}{ax}$; since a, x > 0.

Choose $\delta \leq \frac{a}{2}$. (Since 0 < a < 1, we have to choose a δ neighborhood that stays away from x = 0, otherwise $\frac{1}{ax}$ won't be bounded above).

Then we have that $|x - a| < \frac{a}{2}$ or $-\frac{a}{2} < x - a < \frac{a}{2}$ now add a $\frac{a}{2} < x < \frac{3a}{2}$; Since $\frac{a}{2}, x, \frac{3a}{2} > 0$: $\frac{2}{a} > \frac{1}{x} > \frac{2}{3a}$; now multiply through by $\frac{1}{a} > 0$. $\frac{2}{a^2} > \frac{1}{ax} > \frac{2}{3a^2} \implies \frac{1}{|ax|} < \frac{2}{a^2}$. Thus we have: if $\delta \leq rac{a}{2}$ then

$$\begin{aligned} \left|\frac{1}{x} - \frac{1}{a}\right| &= \frac{1}{|ax|} |x - a| < \frac{2}{a^2} |x - a| < \frac{2}{a^2} \delta < \epsilon. \\ \frac{2}{a^2} \delta < \epsilon \text{ is equivalent to } \delta < \frac{a^2}{2} \epsilon. \end{aligned}$$
Choose $\delta &= \min(\frac{a}{2}, \frac{a^2}{2} \epsilon)$ (remember we chose $\delta \leq \frac{a}{2}$ earlier)

Now let's show that this δ works.

If
$$|x - a| < \delta = \min(\frac{a}{2}, \frac{a^2}{2}\epsilon)$$
 then we have:
 $\left|\frac{1}{x} - \frac{1}{a}\right| = \frac{1}{|ax|}|x - a| < \frac{2}{a^2}|x - a|$ since $\delta \le \frac{a}{2}$
 $\left|\frac{1}{x} - \frac{1}{a}\right| < \frac{2}{a^2}|x - a| < \frac{2}{a^2}\delta \le \frac{2}{a^2}\left(\frac{a^2}{2}\epsilon\right) = \epsilon$ since $\delta \le \frac{a^2}{2}\epsilon$.

Thus we have shown that $f(x) = \frac{1}{x}$ continuous at $a \in (0,1)$.

Now let's show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1). Let's fix an $\epsilon > 0$.

To be uniformly continuous we need to find a $\delta > 0$, that depends only on ϵ , such that if $|x - a| < \delta$ then $\left|\frac{1}{x} - \frac{1}{a}\right| < \epsilon$ for all $a, x \in (0,1)$.

But if $\epsilon > 0$ is fixed, regardless of what δ one chooses, by moving "a" toward 0 $\left|\frac{1}{x} - \frac{1}{a}\right| = \frac{1}{|ax|} |x - a| \to \infty \text{ for } |x - a| < \delta.$

So δ must depend on "a" and $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

Ex. Show $f(x) = x^2$ is uniformly continuous on [-1,1].

We must show that given any $\epsilon > 0$ there exists a $\delta > 0$ for all $a, x \in [-1,1]$ such that if $|x - a| < \delta$ then $|x^2 - a^2| < \epsilon$.

Let's start with the ϵ statement:

$$|x^2 - a^2| = |x - a||x + a|.$$

But we also know that $a, x \in [-1,1]$, so $|a| \le 1$ and $|x| \le 1$. Now using the triangle inequality: $|x + a| \le |x| + |a| \le 1 + 1 = 2$.

So
$$|x^2 - a^2| = |x - a||x + a| \le 2|x - a| < 2\delta$$
.

So if we can force $2\delta < \epsilon$, we'll almost be done.

So if we choose $\delta < \frac{\epsilon}{2}$ (notice δ doesn't depend on a) we have: $|x^2 - a^2| = |x - a| |x + a| \le 2|x - a|$ because $|a| \le 1$ and $|x| \le 1$ $|x^2 - a^2| \le 2|x - a| < 2\delta < 2\left(\frac{\epsilon}{2}\right) = \epsilon$ because $\delta < \frac{\epsilon}{2}$. Hence $f(x) = x^2$ is uniformly continuous on [-1,1]. Theorem: Let $f: X \to Y$, be continuous, X, Y metric spaces with X compact, then f is uniformly continuous on X.

Notice that $f(x) = x^2$ is uniformly continuous on (-1,1) (as well as on [-1,1]) even though (-1,1) is not compact. The same δ , ϵ argument that shows that $f(x) = x^2$ is uniformly continuous on [-1,1] also show that it's uniformly continuous on (-1,1). Thus a continuous function on a compact set **must** be uniformly continuous on the compact set. A continuous function on a noncompact set, may or may not be uniformly continuous on that set.

Some special properties of uniformly continuous functions:

- 1. If $f: E \to Y$ is uniformly continuous on a metric space E and $\{p_n\}$ is a Cauchy sequence in E, then $\{f(p_n)\}$ is a Cauchy sequence in Y. Notice that $f(x) = \frac{1}{x}$ is continuous on $(0, \infty)$, but not uniformly continuous. $\{\frac{1}{n}\}$ is a Cauchy sequence in $(0, \infty)$, but $\{f(\frac{1}{n})\} = \{n\}$ is not.
- 2. If $f: E \subseteq \mathbb{R} \to \mathbb{R}$ is uniformly continuous, E a bounded interval, then $\int_E f(x) dx$ is finite. $f(x) = \frac{1}{x}$ is continuous on (0,1), but not uniformly continuous. $\int_0^1 \frac{1}{x} dx$ is not finite.

Notice also that you can have bounded continuous functions that are not uniformly continuous (e.g. $f(x) = \sin\left(\frac{1}{x}\right)$; $0 < x < 2\pi$) and unbounded continuous functions that are uniformly continuous (e.g. f(x) = x; $-\infty < x < \infty$).

Ex. Prove that
$$f(x) = \frac{x}{1-x}$$
 is uniformly continuous on $[2, \infty)$.

We must show given any $\epsilon > 0$ there exists a $\delta > 0$ for all $a, x \in [2, \infty)$ such that if $|x - a| < \delta$ then $\left| \frac{x}{1 - x} - \frac{a}{1 - a} \right| < \epsilon$.

Let's start with the ϵ statement:

$$\left|\frac{x}{1-x} - \frac{a}{1-a}\right| = \left|\frac{x(1-a) - a(1-x)}{(1-x)(1-a)}\right| = \left|\frac{(x-a)}{(1-x)(1-a)}\right|$$
$$= |x-a| \left|\frac{1}{(1-x)(1-a)}\right|.$$

Now we must find an upper bound on $\left|\frac{1}{(1-x)(1-a)}\right|$ independent of "a".

Since
$$2 \le x$$
 and $2 \le a$: $-1 \le \frac{1}{1-x} < 0$ and $-1 \le \frac{1}{1-a} < 0$.
Thus we can say: $0 < (\frac{1}{1-x})(\frac{1}{1-a}) \le 1$.

Thus we have:

$$\left|\frac{x}{1-x} - \frac{a}{1-a}\right| = |x-a| \left|\frac{1}{(1-x)(1-a)}\right| \le 1|x-a| = \delta.$$

So if we can force $\delta < \epsilon$ we'll almost be done.

So choose $\delta < \epsilon$ which is independent of "*a*".

Now let's show $\delta < \epsilon$ works. If $|x - a| < \delta < \epsilon$ then: $\left|\frac{x}{1-x} - \frac{a}{1-a}\right| = |x - a| \left|\frac{1}{(1-x)(1-a)}\right| < |x - a|$ because $2 \le x$ and $2 \le a$ $\left|\frac{x}{1-x} - \frac{a}{1-a}\right| < |x - a| < \delta < \epsilon$ because $\delta < \epsilon$.

Hence $f(x) = \frac{x}{1-x}$ is uniformly continuous on $[2, \infty)$.