Vector Spaces

Vectors in \mathbb{R}^2

A nonzero vector in \mathbb{R}^2 can be represented by a directed line segment. So a vector is something with a magnitude, how long the vector is, and a direction.

Ex. We can think of the vector v=<2,3> as a line segment starting at (0, 0) (or any other point in the plane) and ending 2 units to the right and 3 units up.

The length of any vector $v = \langle a, b \rangle$ in \mathbb{R}^2 is $|v| = \sqrt{a^2 + b^2}$

Ex. The length of
$$v = <2, 3 >$$
 is:
$$|v| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$$

We can multiply any vector in \mathbb{R}^2 by a real number α , called a scalar, by

$$v = \langle a, b \rangle$$

 $\alpha v = \alpha \langle a, b \rangle = \langle \alpha a, \alpha b \rangle$

Ex. If
$$v = < -3$$
, $2 > 3v = 3 < -3$, $2 > = < -9$, $6 > -2v = -2 < -3$, $2 > = < 6$, $-4 > 3v = 3$

If we have 2 vectors:

$$\begin{array}{l} v=\\ w=\\ \text{then } v+w= \ +< w_1,w_2>=< v_1+w_1,v_2+w_2>. \end{array}$$

Geometrically, v+w is the vector starting at (0,0) and ending at (v_1+w_1,v_2+w_2) .

If $v = \langle a, b \rangle$ then $-v = \langle -a, -b \rangle$.

-v is the same length as v but points in the opposite direction.

Thus
$$v + (-v) = <0, 0>$$
, the zero vector

If w is any vector in \mathbb{R}^2 then w+<0, 0>=w.

Vector Space Axioms

Def. Let V be a set (like all vectors in \mathbb{R}^2) on which the operations of addition and scalar multiplication (i.e. multiplying by a real number) are defined. By this we mean if $v, w \in V$ then $v + w \in V$ and $\alpha v \in V$ where α is any real number. The set V together with the operations of addition and scalar multiplication, is said to form a **Vector Space** if the following axioms hold:

A1.
$$v + w = w + v$$
 for all $v, w \in V$

A2.
$$(v + w) + u = v + (w + u)$$
 for all $u, v, w \in V$

A3. There exists an element 0 in V such that v+0=v for every $v\in V$, (0 is the zero element)

A4. For each $v \in V$ there exists an element $-v \in V$ such that

$$v + (-v) = 0$$

A5 $1 \cdot v = v$ for all $v \in V$

A6. $(\alpha\beta)v = \alpha(\beta v)$ for any scalars $\alpha, \beta \in \mathbb{R}$ and any $v \in V$

A7. $\alpha(v+w)=\alpha v+\alpha w$ for each scalar $\alpha\in\mathbb{R}$ and any $v,w\in V$

A8. $(\alpha + \beta)v = \alpha v + \beta v$ for any scalars of $\alpha, \beta \in \mathbb{R}$ and any $v \in V$.

The elements of \mathbb{R} are called **scalars**.

The elements of *V* are called **vectors**.

Ex. \mathbb{R}^2 is a vector space with (the standard)

$$< v_1, v_2> + < w_1, w_2> = < v_1 + w_1, v_2 + w_2> \quad \text{and} \quad \alpha < v_1, v_2> = <\alpha v_1, \alpha v_2>.$$

To prove this we need to show \mathbb{R}^2 is closed under addition and scalar multiplication and verify the 8 axioms.

Let $v=< v_1, v_2>$, $w=< w_1, w_2>$, $u=< u_1, u_2>$ be any vectors in \mathbb{R}^2 and $\alpha,\beta\in\mathbb{R}$.

 \mathbb{R}^2 is closed under addition because if $v, w \in \mathbb{R}^2$, then:

$$< v_1, v_2 > + < w_1, w_2 > = < v_1 + w_1, v_2 + w_2 > \in \mathbb{R}^2.$$

 \mathbb{R}^2 is closed under scalar multiplication because if $v \in \mathbb{R}^2$, then:

$$\alpha < v_1, v_2 > = < \alpha v_1, \ \alpha v_2 > \in \mathbb{R}^2 \text{ for any } \alpha \in \mathbb{R}$$
.

A1.
$$< v_1, v_2 > + < w_1, w_2 > = < v_1 + w_1, v_2 + w_2 >$$

= $< w_1 + v_1, w_2 + v_2 >$
= $< w_1, w_2 > + < v_1, v_2 >$

A2.
$$(< v_1, v_2 > + < w_1, w_2 >) + < u_1, u_2 >$$

$$= < v_1 + w_1, v_2 + w_2 > + < u_1, u_2 >$$

$$= < v_1 + w_1 + u_1, v_2 + w_2 + u_2 >$$

$$= < v_1, v_2 > + < w_1 + u_1, w_2 + u_2 >$$

$$= < v_1, v_2 > + (< w_1, w_2 > + < u_1, u_2 >)$$

A3.
$$\vec{0} = \langle 0, 0 \rangle$$
; $\langle v_1, v_2 \rangle + \langle 0, 0 \rangle = \langle v_1, v_2 \rangle$

A4.
$$- < v_1, v_2 > = < -v_1, -v_2 >$$

so $< v_1, v_2 > + < -v_1, -v_2 > = < 0, 0 >$

A5.
$$1 \cdot \langle v_1, v_2 \rangle = \langle 1v_1, 1v_2 \rangle = \langle v_1, v_2 \rangle$$

A6.
$$(\alpha\beta) < v_1, v_2 > = < \alpha\beta v_1, \alpha\beta v_2 > = \alpha(< \beta v_1, \beta v_2 >)$$

= $\alpha(\beta < v_1, v_2 >)$

A7.
$$\alpha(< v_1, v_2 > + < w_1, w_2 >) = \alpha < v_1 + w_1, v_2 + w_2 >$$

$$= < \alpha(v_1 + w_1), \alpha(v_2 + w_2) >$$

$$= < \alpha v_1 + \alpha w_1, \alpha v_2 + \alpha w_2 >$$

$$= < \alpha v_1, \alpha v_2 > + < \alpha w_1, \alpha w_2 >$$

$$= \alpha < v_1, v_2 > + \alpha < w_1, w_2 >$$

A8.
$$(\alpha + \beta) < v_1, v_2 > = < (\alpha + \beta)v_1, (\alpha + \beta)v_2 >$$
 $= < \alpha v_1 + \beta v_1, \alpha v_2 + \beta v_2 >$
 $= < \alpha v_1, \alpha v_2 > + < \beta v_1, \beta v_2 >$
 $= \alpha < v_1, v_2 > + \beta < v_1, v_2 >.$

So \mathbb{R}^2 is a vector space with this addition and scalar multiplication.

Ex. $V = \{ \langle a, b \rangle \in \mathbb{R}^2 | a \geq 0, b \geq 0 \}$ is NOT a vector space with the standard addition and scalar multiplication.

To prove something is not a vector space we just need to show that either the set in question is not closed under addition or scalar multiplication, or one of the 8 axioms doesn't hold.

The first thing to check is whether

 $v + w \in V$ whenever $v, w \in V$, and $\alpha v \in V$ for all $v \in V$ and $\alpha \in \mathbb{R}$.

In this case, $v + w \in V$ whenever $v, w \in V$, since: < a, b > + < c, d > = < a + c, b + d >, and if $a, b, c, d \ge 0$ so are a + c and b + d.

However, $\alpha v \notin V$ for all $v \in V$ and all $\alpha \in \mathbb{R}$. For example, if $\alpha = -1$ and $v = <1,2> \in V$ then $\alpha v = <-1,-2> \notin V$.

Ex.
$$\mathbb{R}^n$$
 is a vector space with $v = < v_1, v_2 ..., v_n >$, $w = < w_1, w_2 ..., w_n >$ and $v + w = < v_1 + w_1, v_2 + w_2, \cdots, v_n + w_n >$ and $\alpha v = \alpha < v_1, v_2 ..., v_n > = < \alpha v_1, \alpha v_2 ..., \alpha v_n >$.

The proof is exactly the same as the proof for \mathbb{R}^2 (we just have n components to our vectors instead of 2).

A real $m \times n$ matrix (m rows, n colums) is an array of the form

atrix (
$$m$$
 rows, n colums) is ar $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$ for $i = 1, \ldots, n; \quad j = 1, \ldots, n$

where $a_{i,i} \in \mathbb{R}$ for i = 1, ..., n;

Ex.
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 5 & 2 \\ -3 & 2 & 1 \\ 4 & 3 & 5 \end{bmatrix}$$
 is a 4×3 matrix. The third row is $-3,2,1$ and the second column is $-1,5,2,3$.

Ex. The usual addition and scalar multiplication for matrices works as follows:

$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & 3 & 2 \end{bmatrix} + \begin{bmatrix} -1 & -2 & 5 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 8 \\ 3 & 2 & 3 \end{bmatrix}$$

$$4\begin{bmatrix} -1 & -2 & 5 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & -8 & 20 \\ 12 & -4 & 4 \end{bmatrix}.$$

If m = n we say that A is a square matrix.

Ex. Show the set $V = M_{m \times n}(\mathbb{R}) = \text{all } m \times n$ matrices with real entries with the usual matrix addition and scalar multiplication is a vector space.

First we show that V is closed under addition and scalar multiplication. If $A, B \in V$ then A + B is also an $m \times n$ matrix with real entries, so $A + B \in V$.

If $A \in V$ then , $\alpha \in \mathbb{R}$, is also an $m \times n$ matrix with real entries, so $\alpha A \in V$.

- A1. A + B = B + A for all $A, B \in V$ (matrix addition is commutative)
- A2. (A + B) + C = A + (B + C) for all $A, B, C \in V$ (matrix addition is associative)
- A3. 0 = the zero matrix (zeros in all entries), so A + 0 = A for all $A \in V$
- A4. For each $A \in V$, -A = (-1)A has the property that A + (-A) = 0
- A5. $1 \cdot A = A$ for all $A \in V$ (property of scalar multiplication of matrices).
- A6. $(\alpha\beta)A = \alpha(\beta A)$ for all $A \in V, \alpha, \beta \in \mathbb{R}$ (property of scalar multiplication of matrices)
- A7. $\alpha(A+B)=\alpha A+\alpha B$ for all $A,B\in V$ and $\alpha\in\mathbb{R}$ (distributive property of scalar multiplication of matrices)
- A8. $(\alpha + \beta)A = \alpha A + \beta A$ for all $A \in V$ and $\alpha, \beta \in \mathbb{R}$ (another distributive property of scalar multiplication of matrices).

So $M_{m \times n}$ is a vector space.

Ex. Let $V=P_2(\mathbb{R})=\{all\ polynomials\ of\ degree\leq 2,\ real\ coefficients\}.$ V is a vector space with $p(x)=a_0+a_1x+a_2x^2$ and $q(x)=b_0+b_1x+b_2x^2$ any element of V,

$$p(x)+q(x)=(a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2$$
 and
$$\alpha p(x)=\alpha a_0+\alpha a_1x+\alpha a_2x^2.$$

 $P_2(\mathbb{R})$ is closed under addition because:

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \in P_2(\mathbb{R})$$

 $P_2(\mathbb{R})$ is closed under scalar multiplication because:

$$\alpha p(x) = \alpha a_0 + \alpha a_1 x + \alpha a_2 x^2 \in P_2(\mathbb{R})$$
 for any $\alpha \in \mathbb{R}$.

A1.
$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$$

= $b_0 + b_1x + b_2x^2 + a_0 + a_1x + a_2x^2 = q(x) + p(x)$

A2.
$$(p(x) + q(x)) + r(x)$$

$$= (a_0 + a_1x + a_2x^2 + b_0 + b_1x + b_2x^2) + c_0 + c_1x + c_2x^2$$

$$= (a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2 + c_0 + c_1x + c_2x^2)$$

$$= p(x) + (q(x) + r(x))$$

A3.
$$O = \text{the zero polynomial i.e. } a_0, \ a_1, \ a_2 \text{ are all } 0$$

$$q(x) + 0 = b_0 + b_1 x + b_2 x^2 + 0 = b_0 + b_1 x + b_2 x^2 = q(x)$$

A4.
$$-p(x) = -a_0 - a_1 x - a_2 x^2$$
 so:
 $p(x) + (-p(x)) = (a_0 + a_1 x + a_2 x^2) + (-a_0 - a_1 x - a_2 x^2) = 0$

A5.
$$1 \cdot p(x) = 1(a_0 + a_1x + a_2x^2) = a_0 + a_1x + a_2x^2 = p(x)$$

A6.
$$(\alpha \beta) p(x) = \alpha \beta (a_0 + a_1 x + a_2 x^2) = \alpha (\beta a_0 + \beta a_1 x + \beta a_2 x^2)$$

= $\alpha (\beta p(x))$

A7.
$$\alpha(p(x) + q(x)) = \alpha ((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2)$$

 $= (\alpha a_0 + \alpha b_0) + (\alpha a_1 + \alpha b_1)x + (\alpha a_2 + \alpha b_2)x^2$
 $= (\alpha a_0 + \alpha a_1 x + \alpha a_2 x^2) + (\alpha b_0 + \alpha b_1 x + \alpha b_2 x^2)$
 $= \alpha p(x) + \alpha q(x)$

A8.
$$(\alpha + \beta)p(x) = (\alpha + \beta)(a_0 + a_1x + a_2x^2)$$

= $(\alpha a_0 + \beta a_0) + (\alpha a_1 + \beta a_1)x + (\alpha a_2 + \beta a_2)x^2 = \alpha p(x) + \beta p(x)$.

So *V* is a vector space.

In fact, $P_n(\mathbb{R})$, polynomials with real coefficients of degree $\leq n$, n a positive integer, forms a vector space.

Ex. Let $V = \{polynomials \ with \ real \ coefficients | \ f(0) = 0\}$. Show that V is a vector space with the usual addition and scalar multiplication (as in the previous example).

First show that V is closed under addition.

If
$$f(x), g(x) \in V$$
 then $f(0) = g(0) = 0$.

Then
$$h(x) = f(x) + g(x)$$
 has $h(0) = f(0) + g(0) = 0$.

Since the sum of two polynomials is also a polynomial, $h(x) \in V$.

Now show that V is closed under scalar multiplication.

If $f(x) \in V$ and $c \in \mathbb{R}$ then let h(x) = cf(x).

h(0)=xf(0)=0 and the product of a real number and a polynomial is again a polynomial. Thus $h(x)\in V$.

So V is closed under addition and scalar multiplication.

 $f(x) = 0 \in V$ is the additive identity and since f(0) = 0 and f(x) is a polynomial with real coefficients.

If $f(x) \in V$, then the additive inverse, $-f(x) \in V$, since -f(0) = 0 and -1 times a polynomial is again a polynomial and f(x) + (-f(x)) = 0.

V satisfies axioms 1-8 as in the previous example, so V is a vector space.

Let $\mathfrak{F} = \{functions\ from\ \mathbb{R}\ to\ \mathbb{R}\}$. So the "vectors" in \mathfrak{F} are functions from \mathbb{R} to \mathbb{R} (e.g., $f(x) = x^2$, g(x) = cosx, etc.).

Vector addition is just the usual addition of functions. For example, $f(x) = x^2 - 3x$, $g(x) = 2x^2 + 1$ are in \Im . $f(x) + g(x) = 3x^2 - 3x + 1$.

Scalar multiplication is defined as the usual multiplication of a constant times a function. For example, $f(x) = x^2 - 3x \in \mathfrak{F}$, $4 \in \mathbb{R}$, $4f(x) = 4x^2 - 12x$.

Ex. Show that $\mathfrak{F} = \{functions \ from \ \mathbb{R} \ to \ \mathbb{R}\}$ with the usual addition and scalar multiplication is a vector space.

 \mathfrak{F} is closed under addition since if f(x), $g(x) \in \mathfrak{F}$ then $f(x) + g(x) \in \mathfrak{F}$ because the sum of two functions from \mathbb{R} to \mathbb{R} is again a function from \mathbb{R} to \mathbb{R} .

 $\mathfrak F$ is closed under scalar multiplication because a constant multiple of a function from $\mathbb R$ to $\mathbb R$ is a function from $\mathbb R$ to $\mathbb R$.

The zero vector in \Im is the function f(x) = 0.

If $f(x) \in \mathfrak{I}$ then its additive inverse $-f(x) \in \mathfrak{I}$.

Since axioms 1-8 are satisfied by real numbers they are also satisfied by \Im with the usual addition and scalar multiplication of functions.

Thus $\mathfrak J$ is a vector space.

Ex. Let $V = \{polynomials \ with \ real \ coefficients | \ f(0) = 1\}$ with the usual addition and scalar multiplication for functions. Show that V is not a vector space.

Notice that V is not closed under addition or scalar multiplication since if $f(x), g(x) \in V$ then $h(x) = f(x) + g(x) \notin V$ since h(0) = f(0) + g(0) = 1 + 1 = 2. h(x) = 3(f(x)) then h(0) = 3(f(0)) = 3.

In addition, there is no additive identity (i.e. a zero vector) since if g(x) is the 0 vector then f(x) + g(x) = f(x). But then g(0) = 0. Thus $g(x) \notin V$.

There is no additive inverse as well. If $f(x) \in V$ and g(x) is the additive inverse of f(x), then f(x) + g(x) = 0. But then g(x) = -f(x) and g(0) = -f(0) = -1. Thus $g(x) \notin V$.

Ex. Let $V=\mathbb{R}^2$ and define vector addition by $< a_1, a_2>+< b_1, b_2>=< a_1-b_1, \ a_2+b_2>$ and scalar multiplication by $c< a_1, a_2>=< ca_1, \ ca_2>$. Show that V is not a vector space.

It's straightforward to see that V is closed under addition and scalar multiplication. However, several of the axioms of vector spaces don't hold.

Axiom 1: v+w=w+v. If we let $v=< a_1, a_2>$, $w=< b_1, b_2>$, then $v+w=< a_1-b_1, \ a_2+b_2>$ $w+v=< b_1-a_1, \ a_2+b_2>$ and $a_1-b_1\neq b_1-a_1$ for all $a_1,b_1\in \mathbb{R}^2$. So $v+w\neq w+v$.

Axiom 2:
$$(v+w)+z=v+(w+z)$$
. If we let $v=< a_1, a_2>$, $w=< b_1, b_2>$, $z=< d_1, d_2>$ then $(v+w)+z=< a_1-b_1, \ a_2+b_2>+< d_1, d_2>$ $=< a_1-b_1-d_1, \ a_2+b_2+d_2>$ $v+(w+z)=< a_1, a_2>+< b_1-d_1, \ b_2+d_2>$ $=< a_1-(b_1-d_1), \ a_2+(b_2+d_2)>$ $=< a_1-b_1+d_1, a_2+b_2+d_2>$ So $(v+w)+z\neq v+(w+z)$. Axiom 8: If $a,b\in\mathbb{R}$ and $v\in V$ then $(a+b)v=av+bv$. If we let $v=< a_1, a_2>$ then $(a+b)v=(a+b)< a_1, a_2>=< (a+b)a_1, (a+b)a_2>$ $=< aa_1, aa_2>+< ba_1, ba_2>$ $=< aa_1, aa_2>+< ba_1, ba_2>$ $=< aa_1-ba_1, aa_2+ba_2>$ $=< (a-b)a_1, (a+b)a_2>$ So $(a+b)v\neq av+bv$.

It is possible to have a nonstandard definition of vector addition and scalar multiplication on $V = \mathbb{R}^2$ for which V is a vector space. One example is:

If
$$v = \langle a_1, a_2 \rangle$$
, $w = \langle b_1, b_2 \rangle$ then $v + w = \langle a_1 + b_1 - 1, a_2 + b_2 \rangle$ and $cv = \langle ca_1, ca_2 \rangle$.

However, notice that in this case the zero vector is < 1,0 > not < 0,0 > and the additive inverse of $< a_1, a_2 > \text{is} < 2 - a_1, -a_2 > \text{not} < -a_1, -a_2 >$.

Theorem (cancellation law for vector addition): If v, w, and z are vectors in a vector space V and v + z = w + z then v = w.

Proof: There exists a vector $u \in V$ such that z + u = 0. Thus

$$v = v + 0$$

$$= v + (z + u)$$

$$= (v + z) + u$$

$$= (w + z) + u$$

$$= w + (z + u)$$

$$= w + 0$$

$$= w.$$

Corollary: The zero vector is unique.

Proof: Suppose v and w are both zero vectors. Then

$$z + v = z$$
$$z + w = z$$

Thus: z + v = z + w.

By the cancellation law: v = w.

Corollary: If $v \in V$ then its additive inverse is unique.

Proof: Suppose w_1, w_2 are both additive inverses of $v \in V$, then

$$v + w_1 = 0$$
$$v + w_2 = 0.$$

Thus: $v + w_1 = v + w_2$.

By the cancellation law: $w_1 = w_2$.

Ex. Show $V=\{<a,3>\in\mathbb{R}^2|\ a\in\mathbb{R}\}$ with: <a,b>+< c,d>=<a+c,b+d> and $a<a,b>=<\alpha a,\alpha b>$ is not a vector space.

First check if *V* is closed under addition and scalar multiplication.

$$v, w \in V$$
, $v = \langle v_1, 3 \rangle$, $w = \langle w_1, 3 \rangle$
 $v + w = \langle v_1 + w_1, 6 \rangle \notin V$

So *V* is not closed under addition.

Also if $\alpha = 3$, for example,

$$\alpha v = 3 < v_1, 3 > = < 3v_1, 9 > \notin V$$

So *V* is not closed under scalar multiplication either.

Ex. Let $V = \{(x, y) \in \mathbb{R}^2 | y = 3x\}$. Show that V is a vector space with the usual vector addition and scalar multiplication.

V is closed under addition since if $v, w \in V$ then for some $x_1, x_2 \in \mathbb{R}$

$$v = < x_1, 3x_1 >$$

 $w = < x_2, 3x_2 >$ and
 $v + w = < x_1, 3x_1 > + < x_2, 3x_2 > = < x_1 + x_2, 3(x_1 + x_2) > \in V.$

V is closed under scalar multiplication since if $v \in V$ and $c \in \mathbb{R}$ then

$$v = < x_1, 3x_1 > cv = c < x_1, 3x_1 > = < cx_1, 3cx_1 > \in V.$$

The zero vector in V is: $<0.0>=<0.3(0)>\in V$.

V contains all additive inverses since if $v \in V$ and $v = < x_1, 3x_1 >$ then $w = < -x_1, 3(-x_1) > \in V$ is its additive inverse since:

$$v + w = \langle x_1, 3x_1 \rangle + \langle -x_1, 3(-x_1) \rangle$$

= $\langle 0, 0 \rangle$.

It's straightforward to check that the other axioms hold.

Ex. Show that $V = \{(x, y) \in \mathbb{R}^2 | y = 3x + 1\}$ is not a vector space under the usual vector addition and scalar multiplication.

V is not closed under addition since if $v, w \in V$ and $v = \langle x_1, 3x_1 + 1 \rangle$ $w = \langle x_2, 3x_2 + 1 \rangle$ then

$$v + w = \langle x_1, 3x_1 + 1 \rangle + \langle x_2, 3x_2 + 1 \rangle.$$

= $\langle x_1 + x_2, 3(x_1 + x_2) + 2 \rangle \notin V.$

V is also not closed under scalar multiplication since if $c \in \mathbb{R}$, $c \neq 1$ then

$$cv = \langle cx_1, c(3x_1 + 1) \rangle$$

= $\langle cx_1, 3(cx_1) + c \rangle \neq \langle cx_1, 3(cx_1) + 1 \rangle$

So $cv \notin V$.

The zero vector is not in V. If w is the zero vector then w+v=v for all $v\in V$. But by usual vector addition that means w=<0,0>.

However, $< 0.0 > \notin V$ since $< 0.0, > \neq < 0.3(0) + 1 > = < 0.1 >$.

Additive inverses are not in V.

If $v \in V$ then w is an additive inverse of v if v + w = < 0.0 >

Thus if
$$v = \langle x_1, 3x_1 + 1 \rangle$$
,

then
$$w = <-x_1, 3(-x_1) - 1> = <-x_1, -3x_1 - 1>$$

since
$$\langle x_1, 3x_1 + 1 \rangle + \langle -x_1, -3x_1 - 1 \rangle = \langle 0, 0 \rangle$$
.

But
$$< -x_1, -3x_1 - 1 > \notin V$$
.

Ex. Let $V = \{2x2 \ matrices, A, where \det(A) = 0\}$ Let the addition and scalar multiplication be the usual matrix operations. Show V is not a vector space.

We know V is closed under scalar multiplication because $\det(\alpha A) = \alpha^2 \det(A)$, since A is 2x2, and $\det(A) = 0$, $\alpha^2 \det(A) = 0$.

However, det(A + B) is not necessarily 0, if det(A) and det(B) = 0.

Let
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
; $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

 $\det(A) = 0, \det(B) = 0 \ but \ \det(A + B) = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \neq 0.$

So *V* is not closed under addition.