Vector Spaces

Vectors in \mathbb{R}^2

A nonzero vector in \mathbb{R}^2 can be represented by a directed line segment. So a vector is something with a magnitude, how long the vector is, and a direction.

Ex. We can think of the vector $v = 2, 3 >$ as a line segment starting at (0, 0) (or any other point in the plane) and ending 2 units to the right and 3 units up.

The length of any vector $v = \, < a,b>$ in \mathbb{R}^2 is $|v| = \, \sqrt{a^2 + b^2}$

Ex. The length of $v = 2, 3 >$ is: $|v| = \sqrt{2^2 + 3^2} = \sqrt{4} + 9 = \sqrt{13}$

We can multiply any vector in \mathbb{R}^2 by a real number α , called a scalar, by $v =$ $\alpha v = \alpha < a, b > a < \alpha a, \alpha b >$

Ex. If
$$
v = \langle -3, 2 \rangle
$$

\n $3v = 3 \langle -3, 2 \rangle = \langle -9, 6 \rangle$
\n $-2v = -2 \langle -3, 2 \rangle = \langle 6, -4 \rangle$

If we have 2 vectors:
\n
$$
v = \langle v_1, v_2 \rangle
$$

\n $w = \langle w_1, w_2 \rangle$
\nthen $v + w = \langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle$.

Geometrically, $v + w$ is the vector starting at $(0,0)$ and ending at $(v_1 + w_1, v_2 + w_2).$

If $v =$ then $-v = <-a, -b>.$ $-v$ is the same length as v but points in the opposite direction.

If w is any vector in \mathbb{R}^2 then $w+$ $< 0,0 >$ $= w$.

Vector Space Axioms

Def. Let V be a set (like all vectors in \mathbb{R}^2) on which the operations of addition and scalar multiplication (i.e. multiplying by a real number) are defined. By this we mean if $v, w \in V$ then $v + w \in V$ and $\alpha v \in V$ where α is any real number. The set V together with the operations of addition and scalar multiplication, is said to form a **Vector Space** if the following axioms hold:

- A1. $v + w = w + v$ for all $v, w \in V$
- A2. $(v + w) + u = v + (w + u)$ for all $u, v, w \in V$
- A3. There exists an element 0 in V such that $v + 0 = v$ for every $v \in V$, (0 is the zero element)
- A4. For each $v \in V$ there exists an element $-v \in V$ such that $v + (-v) = 0$
- A5 $1 \cdot v = v$ for all $v \in V$
- A6. $(\alpha\beta)v = \alpha(\beta v)$ for any scalars $\alpha, \beta \in \mathbb{R}$ and any $v \in V$
- A7. $\alpha(v + w) = \alpha v + \alpha w$ for each scalar $\alpha \in \mathbb{R}$ and any $v, w \in V$
- A8. $(\alpha + \beta)v = \alpha v + \beta v$ for any scalars of $\alpha, \beta \in \mathbb{R}$ and any $v \in V$.

The elements of ℝ are called **scalars**. The elements of V are called **vectors**.

Ex.
$$
\mathbb{R}^2
$$
 is a vector space with (the standard)
\n $\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle$ and
\n $\alpha < v_1, v_2 \rangle = \langle \alpha v_1, \alpha v_2 \rangle$.

To prove this we need to show \mathbb{R}^2 is closed under addition and scalar multiplication and verify the 8 axioms.

Let $v = \langle v_1, v_2 \rangle$, $w = \langle w_1, w_2 \rangle$, $u = \langle u_1, u_2 \rangle$ be any vectors in \mathbb{R}^2 and $\alpha, \beta \in \mathbb{R}$. \mathbb{R}^2 is closed under addition because if $v, w \in \mathbb{R}^2$, then: $< v_1, v_2 > + < w_1, w_2 > = < v_1 + w_1, v_2 + w_2 > \in \mathbb{R}^2$.

 \mathbb{R}^2 is closed under scalar multiplication because if $v \in \mathbb{R}^2$, then: $\alpha < v_1, v_2 > - <\alpha v_1, \ \alpha v_2> \in \mathbb{R}^2 \text{ for any } \alpha \in \mathbb{R}.$

A1.
$$
\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle
$$

=
$$
\langle w_1 + v_1, w_2 + v_2 \rangle
$$

=
$$
\langle w_1, w_2 \rangle + \langle v_1, v_2 \rangle
$$

A2.
$$
(< v_1, v_2 > + < w_1, w_2 >)+< u_1, u_2 >
$$

\n $= < v_1 + w_1, v_2 + w_2 > +< u_1, u_2 >$
\n $= < v_1 + w_1 + u_1, v_2 + w_2 + u_2 >$
\n $= < v_1, v_2 > +< w_1 + u_1, w_2 + u_2 >$
\n $= < v_1, v_2 > +(< w_1, w_2 > +< u_1, u_2 >$)

A3. $\vec{0} = 0, 0$ >; $\langle v_1, v_2 \rangle$ + $\langle 0, 0 \rangle = 0, v_1, v_2$

$$
\begin{aligned}\n\text{A4.} & -< v_1, v_2 > = < -v_1, -v_2 > \\
\text{so} & < v_1, v_2 > + < -v_1, -v_2 > = < 0, 0 > \n\end{aligned}
$$

$$
\text{A5. } 1 \cdot \le v_1, v_2 \ge v \le 1 v_1, 1 v_2 \ge v \le v_1, v_2 \ge 0
$$

A6.
$$
(\alpha \beta) < v_1, v_2 > = <\alpha \beta v_1, \alpha \beta v_2 > = \alpha (< \beta v_1, \beta v_2 >)
$$

= $\alpha (\beta < v_1, v_2 >)$

A7.
$$
\alpha(< v_1, v_2 > +< w_1, w_2>) = \alpha < v_1 + w_1, v_2 + w_2 >
$$

\t\t\t\t $= < \alpha(v_1 + w_1), \alpha(v_2 + w_2) >$
\t\t\t\t $= < \alpha v_1 + \alpha w_1, \alpha v_2 + \alpha w_2 >$
\t\t\t\t $= < \alpha v_1, \alpha v_2 > +< \alpha w_1, \alpha w_2 >$
\t\t\t\t $= \alpha < v_1, v_2 > +\alpha < w_1, w_2 >$

AB.
$$
(\alpha + \beta) < v_1, v_2 > = < (\alpha + \beta)v_1, (\alpha + \beta)v_2 > = < \alpha v_1 + \beta v_1, \alpha v_2 + \beta v_2 > = < \alpha v_1, \alpha v_2 > + < \beta v_1, \beta v_2 > = \alpha < v_1, v_2 > + \beta < v_1, v_2 >.
$$

So \mathbb{R}^2 is a vector space with this addition and scalar multiplication.

Ex. $V = \{ \langle a, b \rangle \in \mathbb{R}^2 | a \ge 0, b \ge 0 \}$ is NOT a vector space with the standard addition and scalar multiplication.

To prove something is not a vector space we just need to show that either the set in question is not closed under addition or scalar multiplication, or one of the 8 axioms doesn't hold.

The first thing to check is whether $v + w \in V$ whenever $v, w \in V$, and $\alpha v \in V$ for all $v \in V$ and $\alpha \in \mathbb{R}$. In this case, $v + w \in V$ whenever $v, w \in V$, since:

 $a, b > +c, d > = $a + c, b + d >$, and if $a, b, c, d \ge 0$ so are$ $a + c$ and $b + d$.

However, $\alpha v \notin V$ for all $v \in V$ and all $\alpha \in \mathbb{R}$. For example, if $\alpha = -1$ and $v = < 1,2> \in V$ then $\alpha v = < -1, -2> \notin V$.

Ex. \mathbb{R}^n is a vector space with $v = v_1, v_2, ..., v_n > 0$, $w = v_1, w_2, ..., w_n > 0$ and $v + w = \langle v_1 + w_1, v_2 + w_2, \dots, v_n + w_n \rangle$ and

 $\alpha v = \alpha < v_1, v_2, \ldots, v_n > = \alpha v_1, \alpha v_2, \ldots, \alpha v_n >$. The proof is exactly the same as the proof for \mathbb{R}^2 (we just have n components to our vectors instead of 2).

A real $m \times n$ matrix (*m* rows, *n* colums) is an array of the form

 $A =$ a_{11} … a_{1n} \vdots \vdots \ddots \vdots a_{m1} … a_{mn}] where $a_{ij} \in \mathbb{R}$ for $i = 1, ..., n$;

Ex. $A = |$ $2 -1$ 0 5 −3 2 3 2 1 4 3 5] is a 4 × 3 matrix. The third row is −3,2,1 and the second column is $-1,5$

- Ex. The usual addition and scalar multiplication for matrices works as follows:
- $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 3 & 3 \end{bmatrix}$ 0 3 2 $-\begin{bmatrix} -1 & -2 & 5 \\ 2 & 1 & 1 \end{bmatrix}$ 3 −1 1 $\begin{bmatrix} 1 & -3 & 8 \\ 2 & 3 & 3 \end{bmatrix}$ 3 2 3] $4 \vert$ -1 -2 5 3 −1 1 $\begin{bmatrix} -4 & -8 & 20 \\ 12 & 4 & 4 \end{bmatrix}$ 12 −4 4]. If $m = n$ we say that A is a square matrix.

Ex. Show the set $V = M_{m \times n}(\mathbb{R}) =$ all $m \times n$ matrices with real entries with the usual matrix addition and scalar multiplicaiton is a vector space.

First we show that V is closed under addition and scalar multiplication. If $A, B \in V$ then $A + B$ is also an $m \times n$ matrix with real entries, so $A + B \in V$.

If $A \in V$ then , $\alpha \in \mathbb{R}$, is also an $m \times n$ matrix with real entries, so $\alpha A \in V$.

- A1. $A + B = B + A$ for all $A, B \in V$ (matrix addition is commutative)
- A2. $(A + B) + C = A + (B + C)$ for all $A, B, C \in V$ (matrix addition is associative)
- A3. 0 = the zero matrix (zeros in all entries), so $A + 0 = A$ for all $A \in V$
- A4. For each $A \in V$, $-A = (-1)A$ has the property that $A + (-A) = 0$
- A5. $1 \cdot A = A$ for all $A \in V$ (property of scalar multiplication of matrices).
- A6. $(\alpha\beta)A = \alpha(\beta A)$ for all $A \in V$, $\alpha, \beta \in \mathbb{R}$ (property of scalar multiplication of matrices)
- A7. $\alpha(A + B) = \alpha A + \alpha B$ for all $A, B \in V$ and $\alpha \in \mathbb{R}$ (distributive property of scalar multiplication of matrices)
- A8. $(\alpha + \beta)A = \alpha A + \beta A$ for all $A \in V$ and $\alpha, \beta \in \mathbb{R}$ (another distributive property of scalar multiplication of matrices).
- So $M_{m \times n}$ is a vector space.

Ex. Let $V = P_2(\mathbb{R}) = \{all polynomials of degree \leq 2, real coefficients\}.$ *V* is a vector space with $p(x) = a_0 + a_1 x + a_2 x^2$ and $q(x) = b_0 + b_1 x + b_2 x^2$ any element of V,

$$
p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2
$$

and
$$
\alpha p(x) = \alpha a_0 + \alpha a_1 x + \alpha a_2 x^2.
$$

 $P_2(\mathbb{R})$ is closed under addition because: $p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2 \in P_2(\mathbb{R})$

 $P_2(\mathbb{R})$ is closed under scalar multiplication because: $\alpha p(x) = \alpha a_0 + \alpha a_1 x + \alpha a_2 x^2 \in P_2(\mathbb{R})$ for any $\alpha \in \mathbb{R}$.

A1.
$$
p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2
$$

= $b_0 + b_1x + b_2x^2 + a_0 + a_1x + a_2x^2 = q(x) + p(x)$

A2.
$$
(p(x) + q(x)) + r(x)
$$

= $(a_0 + a_1x + a_2x^2 + b_0 + b_1x + b_2x^2) + c_0 + c_1x + c_2x^2$
= $(a_0 + a_1x + a_2x^2) + (b_0 + b_1x + b_2x^2 + c_0 + c_1x + c_2x^2)$
= $p(x) + (q(x) + r(x))$

A3.
$$
0 =
$$
 the zero polynomial i.e. a_0 , a_1 , a_2 are all 0
\n $q(x) + 0 = b_0 + b_1 x + b_2 x^2 + 0 = b_0 + b_1 x + b_2 x^2 = q(x)$

A4.
$$
-p(x) = -a_0 - a_1 x - a_2 x^2
$$
 so:
\n
$$
p(x) + (-p(x)) = (a_0 + a_1 x + a_2 x^2) + (-a_0 - a_1 x - a_2 x^2) = 0
$$

A5.
$$
1 \cdot p(x) = 1(a_0 + a_1x + a_2x^2) = a_0 + a_1x + a_2x^2 = p(x)
$$

A6.
$$
(\alpha\beta)p(x) = \alpha\beta(a_0 + a_1x + a_2x^2) = \alpha(\beta a_0 + \beta a_1x + \beta a_2x^2)
$$

= $\alpha(\beta p(x))$

A7.
$$
\alpha(p(x) + q(x)) = \alpha ((a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2)
$$

= $(\alpha a_0 + \alpha b_0) + (\alpha a_1 + \alpha b_1)x + (\alpha a_2 + \alpha b_2)x^2$
= $(\alpha a_0 + \alpha a_1x + \alpha a_2x^2) + (\alpha b_0 + \alpha b_1x + \alpha b_2x^2)$
= $\alpha p(x) + \alpha q(x)$

$$
\begin{aligned} \text{A8.} \quad & (\alpha + \beta)p(x) = (\alpha + \beta)(a_0 + a_1x + a_2x^2) \\ &= (\alpha a_0 + \beta a_0) + (\alpha a_1 + \beta a_1)x + (\alpha a_2 + \beta a_2)x^2 = \alpha p(x) + \beta p(x). \end{aligned}
$$

So V is a vector space.

In fact, $P_n(\mathbb{R})$, polynomials with real coefficients of degree $\leq n$, n a positive integer, forms a vector space.

Ex. Let $V = \{polynomials with real coefficients \mid f(0) = 0\}.$ Show that V is a vector space with the usual addition and scalar multiplication (as in the previous example).

First show that V is closed under addition. If $f(x)$, $g(x) \in V$ then $f(0) = g(0) = 0$. Then $h(x) = f(x) + g(x)$ has $h(0) = f(0) + g(0) = 0$. Since the sum of two polynomials is also a polynomial, $h(x) \in V$.

Now show that V is closed under scalar multiplication.

If $f(x) \in V$ and $c \in \mathbb{R}$ then let $h(x) = cf(x)$. $h(0) = xf(0) = 0$ and the product of a real number and a polynomial is again a polynomial. Thus $h(x) \in V$.

So V is closed under addition and scalar multiplication.

 $f(x) = 0 \in V$ is the additive identity and since $f(0) = 0$ and $f(x)$ is a polynomial with real coefficients.

If $f(x) \in V$, then the additive inverse, $-f(x) \in V$, since $-f(0) = 0$ and -1 times a polynomial is again a polynomial and $f(x) + (-f(x)) = 0$.

V satisfies axioms $1 - 8$ as in the previous example, so V is a vector space.

Let $\mathfrak{I} = \{$ functions from $\mathbb R$ to $\mathbb R$. So the "vectors" in $\mathfrak I$ are functions from $\mathbb R$ to $\mathbb R$ (e.g., $f(x) = x^2$, $g(x) = \cos x$, etc.).

Vector addition is just the usual addition of functions. For example, $f(x) = x^2 - 3x$, $g(x) = 2x^2 + 1$ are in \Im . $f(x) + g(x) = 3x^2 - 3x + 1$.

Scalar multiplication is defined as the usual multiplication of a constant times a function. For example, $f(x) = x^2 - 3x \in \Im$, $4 \in \mathbb{R}$, $4f(x) = 4x^2 - 12x$.

Ex. Show that $\mathfrak{I} = \{ functions from \mathbb{R} \text{ to } \mathbb{R} \}$ with the usual addition and scalar multiplication is a vector space.

 \Im is closed under addition since if $f(x)$, $g(x) \in \Im$ then $f(x) + g(x) \in \Im$ because the sum of two functions from $\mathbb R$ to $\mathbb R$ is again a function from $\mathbb R$ to $\mathbb R$.

ℑ is closed under scalar multiplication because a constant multiple of a function from $\mathbb R$ to $\mathbb R$ is a function from $\mathbb R$ to $\mathbb R$.

The zero vector in \Im is the function $f(x) = 0$.

If $f(x) \in \Im$ then its additive inverse $-f(x) \in \Im$.

Since axioms 1-8 are satisfied by real numbers they are also satisfied by \Im with the usual addition and scalar multiplication of functions.

Thus \Im is a vector space.

Ex. Let $V = \{polynomials with real coefficients | f(0) = 1 \}$ with the usual addition and scalar multiplication for functions. Show that V is not a vector space.

Notice that V is not closed under addition or scalar multiplication since if $f(x), g(x) \in V$ then $h(x) = f(x) + g(x) \notin V$ since $h(0) = f(0) + g(0) = 1 + 1 = 2.$ $h(x) = 3(f(x))$ then $h(0) = 3(f(0)) = 3$.

In addition, there is no additive identity (i.e. a zero vector) since if $g(x)$ is the 0 vector then $f(x) + g(x) = f(x)$. But then $g(0) = 0$. Thus $g(x) \notin V$.

There is no additive inverse as well. If $f(x) \in V$ and $g(x)$ is the additive inverse of $f(x)$, then $f(x) + g(x) = 0$. But then $g(x) = -f(x)$ and $q(0) = -f(0) = -1$. Thus $q(x) \notin V$.

Ex. Let $V = \mathbb{R}^2$ and define vector addition by

 a_1, a_2 > +< b_1, b_2 > = < $a_1 - b_1, a_2 + b_2$ > and scalar multiplication by $c < a_1, a_2 > = < c a_1, ca_2 >$. Show that V is not a vector space.

It's straightforward to see that V is closed under addition and scalar multiplication. However, several of the axioms of vector spaces don't hold.

```
Axiom 1: v + w = w + v.
   If we let v = <a_1, a_2>, w = <b_1, b_2>, then
          v + w = <a_1 - b_1, a_2 + b_2>w + v = <b_1 - a_1, a_2 + b_2>and a_1 - b_1 \neq b_1 - a_1 for all a_1, b_1 \in \mathbb{R}^2. So v + w \neq w + v.
```
Axiom 2:
$$
(v + w) + z = v + (w + z)
$$
.
\nIf we let $v = \langle a_1, a_2 \rangle$, $w = \langle b_1, b_2 \rangle$, $z = \langle d_1, d_2 \rangle$ then
\n $(v + w) + z = \langle a_1 - b_1, a_2 + b_2 \rangle + \langle d_1, d_2 \rangle$
\n $= \langle a_1 - b_1 - d_1, a_2 + b_2 + d_2 \rangle$
\n $v + (w + z) = \langle a_1, a_2 \rangle + \langle b_1 - d_1, b_2 + d_2 \rangle$
\n $= \langle a_1 - (b_1 - d_1), a_2 + (b_2 + d_2) \rangle$
\n $= \langle a_1 - b_1 + d_1, a_2 + b_2 + d_2 \rangle$
\nSo $(v + w) + z \neq v + (w + z)$.
\nAxiom 8: If $a, b \in \mathbb{R}$ and $v \in V$ then $(a + b)v = av + bv$.
\nIf we let $v = \langle a_1, a_2 \rangle$ then
\n $(a + b)v = (a + b) \langle a_1, a_2 \rangle = \langle (a + b)a_1, (a + b)a_2 \rangle$
\n $av + bv = a \langle a_1, a_2 \rangle + b \langle a_1, a_2 \rangle$
\n $= \langle aa_1, aa_2 \rangle + \langle ba_1, ba_2 \rangle$
\n $= \langle aa_1 - ba_1, aa_2 + ba_2 \rangle$

$$
av + bv = a < a_1, a_2 > +b < a_1, a_2 >
$$

= $a_1, a_2 > +< b a_1, b a_2 >$
= $a_1 - b a_1, a a_2 + b a_2 >$
= $(a - b) a_1, (a + b) a_2 >$
So $(a + b)v \neq av + bv$.

It is possible to have a nonstandard definition of vector addition and scalar multiplication on $V = \mathbb{R}^2$ for which V is a vector space. One example is:

If
$$
v = a_1, a_2 >
$$
, $w = b_1, b_2 >$ then
\n $v + w = a_1 + b_1 - 1$, $a_2 + b_2 >$ and $cv = a_1, ca_2 >$.

However, notice that in this case the zero vector is $< 1.0 >$ not $< 0.0 >$ and the additive inverse of $< a_1, a_2 >$ is $< 2 - a_1, -a_2 >$ not $< -a_1, -a_2 >$.

Theorem (cancellation law for vector addition): If v, w , and z are vectors in a vector space V and $v + z = w + z$ then $v = w$.

Proof: There exists a vector $u \in V$ such that $z + u = 0$. Thus

 $v = v + 0$ $= v + (z + u)$ $= (v + z) + u$ $= (w + z) + u$ $= w + (z + u)$ $= w + 0$ $= w$.

Corollary: The zero vector is unique.

Proof: Suppose v and w are both zero vectors. Then $z + v = z$ $z + w = z$ Thus: $z + v = z + w$. By the cancellation law: $v = w$.

Corollary: If $v \in V$ then its additive inverse is unique.

Proof: Suppose w_1, w_2 are both additive inverses of $v \in V$, then $v + w_1 = 0$ $v + w_2 = 0.$ Thus: $v + w_1 = v + w_2$. By the cancellation law: $w_1 = w_2$.

Ex. Show $V = \{ \in \mathbb{R}^2 \mid a \in \mathbb{R} \}$ with: $a, b > +< c, d> =$ and $\alpha < a, b> = <\alpha a, \alpha b>$ is not a vector space.

First check if V is closed under addition and scalar multiplication.

$$
v, w \in V, \qquad v = \langle v_1, 3 \rangle, \quad w = \langle w_1, 3 \rangle
$$

$$
v + w = \langle v_1 + w_1, 6 \rangle \notin V
$$

So V is not closed under addition.

Also if $\alpha = 3$, for example,

$$
\alpha v = 3 < v_1, 3 > = <3v_1, 9 > \notin V
$$

So V is not closed under scalar multiplication either.

Ex. Let $V = \{(x, y) \in \mathbb{R}^2 | y = 3x\}$. Show that V is a vector space with the usual vector addition and scalar multiplication.

V is closed under addition since if $v, w \in V$ then for some $x_1, x_2 \in \mathbb{R}$ $v =$ $w = < x_2, 3x_2 >$ and $v + w = \langle x_1, 3x_1 \rangle + \langle x_2, 3x_2 \rangle = \langle x_1 + x_2, 3(x_1 + x_2) \rangle \in V.$

V is closed under scalar multiplication since if $v \in V$ and $c \in \mathbb{R}$ then

$$
v = cv = c < x_1, 3x_1> = \in V.
$$

The zero vector in V is: $\langle 0,0 \rangle = \langle 0,3(0) \rangle \in V$.

V contains all additive inverses since if $v \in V$ and $v = \langle x_1, 3x_1 \rangle$ then $w = < -x_1, 3(-x_1) > \in V$ is its additive inverse since: $v + w = + < -x_1, 3(-x_1)>$ $=< 0.0 >.$

It's straightforward to check that the other axioms hold.

Ex. Show that $V = \{(x, y) \in \mathbb{R}^2 | y = 3x + 1\}$ is not a vector space under the usual vector addition and scalar multiplication.

V is not closed under addition since if $v, w \in V$ and $v = < x_1, 3x_1 + 1 >$ $w = \langle x_2, 3x_2 + 1 \rangle$ then

$$
v + w = \langle x_1, 3x_1 + 1 \rangle + \langle x_2, 3x_2 + 1 \rangle
$$

= $\langle x_1 + x_2, 3(x_1 + x_2) + 2 \rangle \notin V$.

V is also not closed under scalar multiplication since if $c \in \mathbb{R}$, $c \neq 1$ then $cv = < c x_1, c(3x_1 + 1) >$ $=< c x_1, 3(c x_1) + c > \neq < c x_1, 3(c x_1) + 1 >$ So $cv \notin V$.

The zero vector is not in V. If w is the zero vector then $w + v = v$ for all $v \in V$. But by usual vector addition that means $w = 0.0$ >. However, $< 0.0 > \notin V$ since $< 0.0, > \neq < 0.3(0) + 1 > = < 0.1 >$.

Additive inverses are not in V . If $v \in V$ then w is an additive inverse of v if $v + w = 0.0 > 0$ Thus if $v = < x_1, 3x_1 + 1 >$, then $w = < -x_1, 3(-x_1) - 1 > = < -x_1, -3x_1 - 1 >$ since $\langle x_1, 3x_1 + 1 \rangle$ + $\langle -x_1, -3x_1 - 1 \rangle$ = $\langle 0, 0 \rangle$. But $\langle -x_1, -3x_1 - 1 \rangle \notin V$.

Ex. Let $V = \{2x2 \text{ matrices}, A, where \text{det}(A) = 0\}$ Let the addition and scalar multiplication be the usual matrix operations. Show V is not a vector space.

We know V is closed under scalar multiplication because $\det(\alpha A) = \alpha^2 \det(A)$, since A is 2x2, and $\det(A) = 0$, $\alpha^2 \det(A) = 0.$

However, $\det(A + B)$ is not necessarily 0, if $\det(A)$ and $\det(B) = 0$. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 0 0); $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 0 1) $det(A) = 0$, $det(B) = 0$ *but* $det(A + B) = det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 0 1 $= 1 \neq 0.$ So V is not closed under addition.