Functions on \mathbb{R}^n

<u>The Topology of \mathbb{R}^n </u>

 $\mathbb{R}^n = \{ (x_1, x_2, \dots, x_n) | x_i \in \mathbb{R}, i = 1, \dots, n \}.$

 \mathbb{R}^n is a vector space with standard basis $\{e_1, e_2, \dots, e_n\}$ where:

$$e_1 = (1, 0, 0, \dots, 0)$$

$$e_2 = (0, 1, 0, \dots, 0)$$

:

$$e_n = (0, 0, 0, \dots, 1).$$

We define a norm on \mathbb{R}^n by:

$$|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
; $x = (x_1, x_2, \dots, x_n)$.

We can then define a distance on \mathbb{R}^n by:

$$d(x, y) = |x - y| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

where $x = (x_1, x_2, \dots, x_n), \quad y = (y_1, y_2, \dots, y_n).$

Def. Let $\{p_j\}$ be a sequence in \mathbb{R}^n . We say $\{p_j\}$ converges to $p \in \mathbb{R}^n$ if for all $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ (ie, the positive integers) such that if $j \ge N$ then $|p - p_j| < \epsilon$.

Def. Let $\{p_j\}$ be a sequence in \mathbb{R}^n . We say $\{p_j\}$ is a **Cauchy sequence** if for all $\epsilon > 0$ there exists a $N \in \mathbb{Z}^+$ such that if $j, k \ge N$ then $|p_j - p_k| < \epsilon$.

 \mathbb{R}^n is **complete** (i.e. every Cauchy sequence converges) with respect to this distance function. In addition, \mathbb{R}^n is a **Banach space** (i.e. a complete, normed, vector space).

Proposition: Given $x, y \in \mathbb{R}^n$, then:

i) $|x + y| \le |x| + |y|$ (triangle inequality) ii) $|x \cdot y| \le |x| |y|$ (Cauchy-Schwarz inequality).

Def. A linear transformation, $T: \mathbb{R}^n \to \mathbb{R}^m$, is a function such that for all $u, v \in \mathbb{R}^n$ and $c \in \mathbb{R}$: a. T(u + v) = T(u) + T(v)b. T(cu) = cT(u).

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be represented with respect to the usual basis in \mathbb{R}^n and \mathbb{R}^m by an $m \times n$ matrix

$$T = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where $T(e_i) = \sum_{j=1}^m a_{ji}e_j$, $e_j = (0, 0, ..., 1, 0, 0, ..., 0)$ and the 1 is in the j^{th} place.

The coefficients of $T(e_i)$ appear in the i^{th} column of the matrix.

$$T(e_i) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix}$$

Ex. Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ and $S: \mathbb{R}^4 \to \mathbb{R}^3$ be linear transformations. Suppose:

$$T(1,0) = (0,2,3,1)$$

$$T(0,1) = (2,-1,-1,2)$$

$$S(1,0,0,0) = (1,2,3)$$

$$S(0,1,0,0) = (-1,3,1)$$

$$S(0,0,1,0) = (2,3,1)$$

$$S(0,0,0,1) = (0,1,2).$$

Find a matrix representation of S and T with respect to the standard basis, then find a matrix representation of $S \circ T \colon \mathbb{R}^2 \to \mathbb{R}^3$.

$$T = \begin{pmatrix} 0 & 2 \\ 2 & -1 \\ 3 & -1 \\ 1 & 2 \end{pmatrix}; \quad S = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & 3 & 3 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix}.$$

The matrix representation of the composition, $S \circ T$, is gotten by matrix multiplication.

$$S \circ T = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & 3 & 3 & 1 \\ 3 & 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 2 & -1 \\ 3 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 16 & 0 \\ 7 & 8 \end{pmatrix}.$$

Prop. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a number, M, such that: $|T(h)| \le M|h|$ for all $h \in \mathbb{R}^n$.

Proof: Let
$$h = (h_1, h_2, ..., h_n)$$
 and $T = \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix}$ then,
 $|T(h)| = \begin{vmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix} \end{vmatrix}$
 $= \begin{vmatrix} a_1 \cdot h \\ a_2 \cdot h \\ \vdots \\ a_m \cdot h \end{vmatrix}$ where $a_i = (a_{i1}, a_{i2}, \dots, a_{in})$
 $= \sqrt{(a_1 \cdot h)^2 + (a_2 \cdot h)^2 + \dots + (a_m \cdot h)^2}$

 $\leq \sqrt{(|a_1||h|)^2 + (|a_2||h|)^2 + \dots + (|a_m||h|)^2}$ Cauchy-Schwarz Inequality

$$= \left(\sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_m|^2}\right)|h|.$$

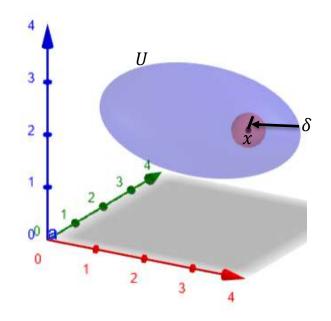
Thus:

$$|T(h)| \le \left(\sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_m|^2}\right)|h|.$$

So take

$$M = \sqrt{|a_1|^2 + |a_2|^2 + \dots + |a_m|^2}.$$

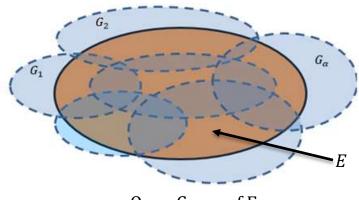
Def. A subset $U \subseteq \mathbb{R}^n$ is **open** if given any point $x \in U$, x is an **interior point** of U. That is, there exists a $\delta > 0$ such that if $d(x, y) = |x - y| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} < \delta$, then $y \in U$.



Ex.
$$H = \{(x_1, ..., x_n) | x_n > 0\}$$
 is an open set in \mathbb{R}^n . Given any point,
 $(x_1, ..., x_n) \in H$, the set of $y \in \mathbb{R}^n$ where:
 $\sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} < \frac{x_n}{2} = \delta$
is contained in H .

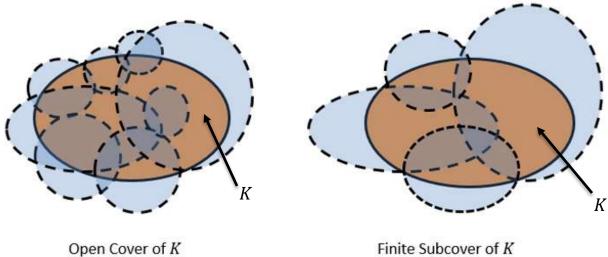
Def. A subset $V \subseteq \mathbb{R}^n$ is **closed** if its complement in \mathbb{R}^n , i.e. $\mathbb{R}^n - V$, is open.

Def. Let $E \subseteq \mathbb{R}^n$. $\{G_{\alpha}\}$ is an open cover of E if each G_{α} is an open set and $\cup_{\alpha} G_{\alpha} \supseteq E.$



Open Cover of E

Def. A set *K* is **compact** if every open cover has a finite subcover.



Finite Subcover of K

Theorem (Heine-Borel): If $K \subseteq \mathbb{R}^n$, K is compact if, and only if, K is closed and bounded.

Ex. [0, 3] is compact.

- $[0, 1] \times [0, 1] \times [0, 1]$ is compact.
- (0, 3] is not compact (not closed).

<u>Functions on \mathbb{R}^n </u>

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Then we can write: $f(x_1, x_2, \dots, x_n) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n))$ where $f_i: A \subseteq \mathbb{R}^n \to \mathbb{R}$.

Def. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ and $x, a \in \mathbb{R}^n, p \in \mathbb{R}^m$. We say $\lim_{x \to a} f(x) = p$ if for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - p| < \epsilon$.

Notice, if $x = (x_1, ..., x_n)$, $a = (a_1, ..., a_n)$, and $p = (p_1, ..., p_m)$, then the δ and ϵ statements become:

$$0<\sqrt{(x_1-a_1)^2+\dots+(x_n-a_n)^2}<\delta\quad\text{implies that}$$

$$\sqrt{(f_1(x)-p_1)^2+\dots+(f_m(x)-p_m)^2}<\epsilon\;.$$

The following propositions will be useful later:

Prop: Let $f: \mathbb{R}^n \to \mathbb{R}^m$, then $\lim_{x \to a} f(x) = \vec{0}$ (i.e. the zero-vector in \mathbb{R}^m) if, and only if, $\lim_{x \to a} |f(x)| = 0$.

Proof: Assume $\lim_{x \to a} f(x) = \vec{0}$. We must show that for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $||f(x)| - 0| < \epsilon$.

Notice: $||f(x)| - 0| = |f(x) - \vec{0}|.$ But since $\lim_{x \to a} f(x) = \vec{0}$, we know given any $\epsilon > 0$, there exists a $\delta' > 0$ such that if $0 < |x - a| < \delta'$, then $|f(x) - \vec{0}| < \epsilon$.

Choose
$$\delta = \delta'$$
 then $0 < |x - a| < \delta$ implies
 $||f(x)| - 0| = |f(x) - \vec{0}| < \epsilon.$
 $\Rightarrow \lim_{x \to a} |f(x)| = 0.$

Now assume $\lim_{x \to a} |f(x)| = 0$. We must show given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - \vec{0}| < \epsilon$. But since $\lim_{x \to a} |f(x)| = 0$ we know given $\epsilon > 0$ there exists a $\delta' > 0$

But since $\lim_{x \to a} |f(x)| = 0$, we know given $\epsilon > 0$ there exists a $\delta' > 0$ such that if $0 < |x - a| < \delta'$, then $||f(x)| - 0| < \epsilon$.

Choose $\delta = \delta'$ then if $0 < |x - a| < \delta$, then $|f(x) - \vec{0}| = ||f(x)| - 0| < \epsilon$. $\Rightarrow \lim_{x \to a} f(x) = \vec{0}$. Prop: Let $f : \mathbb{R}^n \to \mathbb{R}^m$, $a, x \in \mathbb{R}^n$, then $\lim_{x \to a} |f(x)| = 0$ if, and only if, $\lim_{x \to a} |f_i(x)| = 0$ for i = 1, ..., m, and $f(x) = (f_1(x), f_2(x), ..., f_m(x)).$

Proof: HW Problem: For one direction of this proof it is useful to know:

$$\begin{aligned} |x| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \le \sqrt{x_1^2} + \sqrt{x_2^2} + \dots \sqrt{x_n^2} \\ &= |x_1| + |x_2| + \dots |x_n|. \end{aligned}$$

We can see this by squaring both sides of the inequality:

$$x_1^2 + x_2^2 + \dots + x_n^2 \le |x_1|^2 + \dots |x_n|^2 + \sum_{i < j} 2|x_i||x_j|$$

Def. f is continuous at $x = (x_1, x_2, ..., x_n) \in A$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such that if $d(x, y) < \delta$, $y \in A$, then $d(f(x), f(y)) < \epsilon$.

That is, if
$$\sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} < \delta$$

Then $\sqrt{(f_1(x) - f_1(y))^2 + \dots + (f_m(x) - f_m(y))^2} < \epsilon$

Def. f is continuous on $A \subseteq \mathbb{R}^n$ if f is continuous at every point $x \in A$.

Theorem: $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is continuous if, and only if, each f_i is continuous. Proof: HW Problem. Theorem: Let $f, g: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be continuous at $a \in U$, then $f \pm g, |f|$, and $f \cdot g$ are continuous at $a \in U$.

Proof of f + g is continuous at $a \in U$.

We must show for all $\epsilon > 0$ there exists an $\delta > 0$ such that if $|x - a| < \delta$, then $|(f(x) + g(x)) - (f(a) + g(a))| < \epsilon$.

Since f is continuous at $a \in U$, we know there exists a $\delta_1 > 0$ such that if $|x - a| < \delta_1$, then $|f(x) - f(a)| < \frac{\epsilon}{2}$.

Since g is continuous at $a \in U$, we know there exists a $\delta_2 > 0$ such that if $|x - a| < \delta_2$, then $|g(x) - g(a)| < \frac{\epsilon}{2}$.

Let
$$\delta = \min(\delta_1, \delta_2)$$
:
If $|x - a| < \delta$, then $|f(x) - f(a)| < \frac{\epsilon}{2}$
and $|g(x) - g(a)| < \frac{\epsilon}{2}$

Thus,

$$\left| \left(f(x) + g(x) \right) - \left(f(a) + g(a) \right) \right| = \left| \left(f(x) - f(a) \right) + \left(g(x) - g(a) \right) \right|$$
$$\leq \left| f(x) - f(a) \right| + \left| g(x) - g(a) \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

and f + g is continuous at $a \in U$.

Theorem: If $f: A \to \mathbb{R}^m$ is continuous, $A \subseteq \mathbb{R}^n$, and A is compact, then $f(A) \subseteq \mathbb{R}^m$ is compact.