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                                               Functions on ℝ𝑛 
 

 
The Topology of ℝ𝑛 

 
ℝ𝑛 = {(𝑥1, 𝑥2, … , 𝑥𝑛)| 𝑥𝑖 ∈ ℝ, 𝑖 = 1,… , 𝑛}.  

 

 

ℝ𝑛 is a vector space with standard basis {𝑒1, 𝑒2, … , 𝑒𝑛} where: 
 

𝑒1 = (1, 0, 0,… ,0) 

𝑒2 = (0, 1, 0, … ,0) 

⋮ 

   𝑒𝑛 = (0, 0, 0, … ,1). 
 

 

We define a norm on ℝ𝑛 by: 
 

|𝑥| = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2  ;    𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

 
We can then define a distance on ℝ𝑛 by: 
 

𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 +⋯+ (𝑥𝑛 − 𝑦𝑛)2 
 

where     𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛),     𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛). 
 
Def.  Let {𝑝𝑗} be a sequence in ℝ𝑛.  We say {𝒑𝒋} converges to 𝒑 ∈ ℝ𝑛 if for all 

𝜖 > 0 there exists a 𝑁 ∈ ℤ+ (ie, the positive integers) such that if 𝑗 ≥ 𝑁 then 

|𝑝 − 𝑝𝑗| < 𝜖. 

 
Def.  Let {𝑝𝑗} be a sequence in ℝ𝑛.  We say {𝒑𝒋} is a Cauchy sequence if for all 

𝜖 > 0 there exists a 𝑁 ∈ ℤ+ such that if 𝑗, 𝑘 ≥ 𝑁 then |𝑝𝑗 − 𝑝𝑘| < 𝜖. 

 
ℝ𝑛 is complete (i.e. every Cauchy sequence converges) with respect to this 

distance function. In addition,  ℝ𝑛 is a Banach space (i.e. a complete, normed, 

vector space). 
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Proposition:  Given 𝑥, 𝑦 ∈ ℝ𝑛, then: 
 

i) |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|        (triangle inequality) 

ii) |𝑥 ∙ 𝑦| ≤ |𝑥| |𝑦|               (Cauchy-Schwarz inequality). 

 

 

Def.  A linear transformation, 𝑇:ℝ𝑛 → ℝ𝑚, is a function such that for all   

𝑢, 𝑣 ∈ ℝ𝑛 and  𝑐 ∈ ℝ: 

     a.     𝑇(𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣) 

     b.           𝑇(𝑐𝑢) = 𝑐𝑇(𝑢). 

 
 

A linear transformation 𝑇:ℝ𝑛 → ℝ𝑚 can be represented with respect to the 

usual basis in ℝ𝑛 and ℝ𝑚 by an 𝑚 ×  𝑛 matrix 
 

 

𝑇 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) 

 

where 𝑇(𝑒𝑖) = ∑ 𝑎𝑗𝑖𝑒𝑗
𝑚
𝑗=1  , 𝑒𝑗 = (0, 0, … , 1, 0, 0, … ,0) and the 1 is in the 

𝑗𝑡ℎ place.  
 
 

 The coefficients of 𝑇(𝑒𝑖) appear in the 𝑖𝑡ℎ  column of the matrix. 
 
     

𝑇(𝑒𝑖) = (

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮
𝑎𝑚1 … … 𝑎𝑚𝑛

)

(

 
 

0
⋮
1
⋮
0)

 
 
= (

𝑎1𝑖
𝑎2𝑖
⋮
𝑎𝑚𝑖

). 
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Ex.  Let 𝑇:ℝ2 → ℝ4 and 𝑆: ℝ4 → ℝ3 be linear transformations. Suppose:  
 

                𝑇(1, 0) = (0, 2, 3, 1)                 𝑆(1, 0, 0, 0) = (1, 2, 3) 
𝑇(0, 1) = (2,−1, −1, 2)          𝑆(0, 1, 0, 0) = (−1, 3, 1) 

𝑆(0, 0, 1, 0) = (2, 3, 1) 
                    𝑆(0, 0, 0, 1) = (0, 1, 2). 
 

Find a matrix representation of 𝑆 and 𝑇 with respect to the standard basis, then 

find a matrix representation of 𝑆 ∘ 𝑇: ℝ2 → ℝ3. 
 
 

𝑇 = (

0    2
2 −1
3 −1
1    2

) ;        𝑆 = (
1 −1 2 0
2    3 3 1
3    1 1 2

). 

 
The matrix representation of the composition, 𝑆 ∘ 𝑇, is gotten by matrix 

multiplication.  
 

𝑆 ∘ 𝑇 = (
1 −1 2 0
2 3 3 1
3 1 1 2

)(

0    2
2 −1
3 −1
1    2

) = (
4 1
16 0
7 8

). 
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Prop.  Let 𝑇:ℝ𝑛 → ℝ𝑚 be a linear transformation. Then there exists a 

 number, 𝑀, such that: |𝑇(ℎ)| ≤ 𝑀|ℎ| for all ℎ ∈ ℝ𝑛. 

 

Proof:  Let ℎ = (ℎ1, ℎ2, … , ℎ𝑛) and 𝑇 = (

𝑎11 ⋯ ⋯ 𝑎1𝑛
⋮ ⋮
⋮ ⋮
𝑎𝑚1 ⋯ ⋯ 𝑎𝑚𝑛

) then, 

 

|𝑇(ℎ)| = |(

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

)(

ℎ1
ℎ2
⋮
ℎ𝑛

)| 

 

 

                                       = |

𝑎1 ∙ ℎ
𝑎2 ∙ ℎ
⋮

𝑎𝑚 ∙ ℎ

|                  where 𝑎𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛) 

 

                                         = √(𝑎1 ∙ ℎ)2 + (𝑎2 ∙ ℎ)2 +⋯+ (𝑎𝑚 ∙ ℎ)2 
 

≤ √(|𝑎1||ℎ|)2 + (|𝑎2||ℎ|)2 +⋯+ (|𝑎𝑚||ℎ|)2  Cauchy-Schwarz Inequality 

 

                                         = (√|𝑎1|2 + |𝑎2|2 +⋯+ |𝑎𝑚|2)|ℎ|. 

Thus:  

                             |𝑇(ℎ)| ≤ (√|𝑎1|2 + |𝑎2|2 +⋯+ |𝑎𝑚|2)|ℎ|. 

 

So take                         𝑀 = √|𝑎1|2 + |𝑎2|2 +⋯+ |𝑎𝑚|2. 
 
 
 
 



5 
 

Def.  A subset 𝑈 ⊆ ℝ𝑛 is open if given any point 𝑥 ∈ 𝑈, 𝑥 is an interior point of 

𝑈. That is, there exists a 𝛿 > 0 such that if 

 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 +⋯+ (𝑥𝑛 − 𝑦𝑛)2 < 𝛿,  
 then 𝑦 ∈ 𝑈. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.  𝐻 = {(𝑥1, … , 𝑥𝑛)| 𝑥𝑛 > 0} is an open set in ℝ𝑛. Given any point, 
 (𝑥1, … , 𝑥𝑛) ∈ 𝐻, the set of  𝑦 ∈ ℝ𝑛 where: 

√(𝑥1 − 𝑦1)2 +⋯+ (𝑥𝑛 − 𝑦𝑛)2 <
𝑥𝑛
2
= 𝛿 

is contained in 𝐻. 
 

 
 
Def. A subset 𝑉 ⊆ ℝ𝑛 is closed if its complement in ℝ𝑛, i.e. ℝ𝑛 − 𝑉,   
is open . 
 
 
 

𝑈 

𝑥 
𝛿 
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Def.  Let 𝐸 ⊆ ℝ𝑛. {𝑮𝜶} is an open cover of 𝑬 if each 𝐺𝛼 is an open set and 
∪𝛼 𝐺𝛼 ⊇ 𝐸. 
 
 
 
 
 
 
 
 
 
 
Def.  A set 𝐾 is compact if every open cover has a finite subcover. 
 

 
 
 
 
Theorem (Heine-Borel): If 𝐾 ⊆ ℝ𝑛, 𝐾 is compact if, and only if, 𝐾 is 
 closed and bounded. 
 
 
 

𝐸 

Open Cover of E 

𝐾 
𝐾 
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Ex.  [0, 3] is compact. 

       [0, 1] × [0, 1] × [0, 1] is compact. 

       (0, 3] is not compact  (not closed). 

 

 

 

 

Functions on ℝ𝑛 
 
Let 𝑓: 𝐴 ⊆ ℝ𝑛 → ℝ𝑚.  Then we can write: 
 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛), 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛), … , 𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛)) 
 

where 𝑓𝑖: 𝐴 ⊆ ℝ
𝑛 → ℝ. 

 
 

Def.  Let 𝑓:ℝ𝑛 → ℝ𝑚 and 𝑥, 𝑎 ∈ ℝ𝑛, 𝑝 ∈ ℝ𝑚.  We say 𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = 𝒑  if for 

         all 𝜖 > 0,  there exists a 𝛿 > 0 such that if 0 < |𝑥 − 𝑎| < 𝛿, then 

          |𝑓(𝑥) − 𝑝| < 𝜖 .  
 
 

 Notice, if 𝑥 = (𝑥1, … , 𝑥𝑛), 𝑎 = (𝑎1, … , 𝑎𝑛), and 𝑝 = (𝑝1, … , 𝑝𝑚), 
 then the 𝛿 and 𝜖 statements become: 
 

                            0 < √(𝑥1 − 𝑎1)2 +⋯+ (𝑥𝑛 − 𝑎𝑛)2 < 𝛿     implies that 
 

 

√(𝑓1(𝑥) − 𝑝1)2 +⋯+ (𝑓𝑚(𝑥) − 𝑝𝑚)2 < 𝜖 . 
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The following propositions will be useful later: 

 

Prop:  Let 𝑓:ℝ𝑛 → ℝ𝑚, then lim
𝑥→𝑎

𝑓(𝑥) = 0⃗  (i.e. the zero-vector in ℝ𝑚) if, and 

only if, lim
𝑥→𝑎
|𝑓(𝑥)| = 0. 

 

Proof:  Assume lim
𝑥→𝑎

𝑓(𝑥) = 0⃗ .   
 

We must show that for all 𝜖 > 0, there exists a 𝛿 > 0 such that if       

           0 < |𝑥 − 𝑎| < 𝛿, then ||𝑓(𝑥)| − 0| < 𝜖. 

 

Notice:        ||𝑓(𝑥)| − 0| = |𝑓(𝑥) − 0⃗ |.   

 

But since lim
𝑥→𝑎

𝑓(𝑥) = 0⃗ , we know given any 𝜖 > 0, there exists a      

          𝛿′ > 0 such that if 0 < |𝑥 − 𝑎| < 𝛿′, then |𝑓(𝑥) − 0⃗ | < 𝜖. 

 
Choose 𝛿 = 𝛿′ then 0 < |𝑥 − 𝑎| < 𝛿 implies 

                           ||𝑓(𝑥)| − 0| = |𝑓(𝑥) − 0⃗ | < 𝜖. 

                      ⇒ lim
𝑥→𝑎
|𝑓(𝑥)| = 0. 

 
 

Now assume lim
𝑥→𝑎
|𝑓(𝑥)| = 0. 

We must show given any 𝜖 > 0 there exists a 𝛿 > 0 such that if  

             0 < |𝑥 − 𝑎| < 𝛿, then |𝑓(𝑥) − 0⃗ | < 𝜖.  

 

But since lim
𝑥→𝑎
|𝑓(𝑥)| = 0, we know given 𝜖 > 0 there exists a 𝛿′ > 0 such that if 

                       0 < |𝑥 − 𝑎| < 𝛿′, then ||𝑓(𝑥)| − 0| < 𝜖. 

 

Choose 𝛿 = 𝛿′ then if 0 < |𝑥 − 𝑎| < 𝛿, then 

                                        |𝑓(𝑥) − 0⃗ | = ||𝑓(𝑥)| − 0| < 𝜖.  

                    ⇒     lim
𝑥→𝑎

𝑓(𝑥) = 0⃗ . 
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Prop: Let 𝑓:ℝ𝑛 → ℝ𝑚, 𝑎, 𝑥 ∈ ℝ𝑛, then lim
𝑥→𝑎
|𝑓(𝑥)| = 0 if,  

and only if, lim
𝑥→𝑎
|𝑓𝑖(𝑥)| = 0 for 𝑖 = 1, … ,𝑚, and  

𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)). 

 

 

Proof:  HW Problem: For one direction of this proof it is useful to know: 

               |𝑥| = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2  ≤ √𝑥1

2 +√𝑥2
2 +⋯√𝑥𝑛

2 

                                                                  = |𝑥1| + |𝑥2| + ⋯ |𝑥𝑛|.  

 

                We can see this by squaring both sides of the inequality: 

                           𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2 ≤ |𝑥1|

2 +⋯ |𝑥𝑛|
2 +∑ 2|𝑥𝑖||𝑥𝑗|𝑖<𝑗 . 

 

 

Def.  𝑓 is continuous at 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐴 if for all 𝜖 > 0 there exists a 

        𝛿 > 0, such that if 𝑑(𝑥, 𝑦) < 𝛿,   𝑦 ∈ 𝐴, then  𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝜖.   

 

That is, if                          √(𝑥1 − 𝑦1)2 +⋯+ (𝑥𝑛 − 𝑦𝑛)2 < 𝛿   

Then      √(𝑓1(𝑥) − 𝑓1(𝑦))
2
+⋯+ (𝑓𝑚(𝑥) − 𝑓𝑚(𝑦))

2
< 𝜖 . 

 

 

Def. 𝑓 is continuous on 𝑨 ⊆ ℝ𝑛 if 𝑓 is continuous at every point 𝑥 ∈ 𝐴. 

 

 

Theorem: 𝑓: 𝐴 ⊆ ℝ𝑛 → ℝ𝑚 is continuous if, and only if, each 𝑓𝑖 is  continuous. 

 

Proof:  HW Problem.  
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Theorem: Let 𝑓, 𝑔: 𝑈 ⊆ ℝ𝑛 → ℝ𝑚 be continuous at 𝑎 ∈ 𝑈, then    

       𝑓 ± 𝑔, |𝑓|, and 𝑓 ⋅ 𝑔 are continuous at 𝑎 ∈ 𝑈. 

 

Proof of 𝑓 + 𝑔 is continuous at 𝑎 ∈ 𝑈.    

 

We must show for all 𝜖 > 0 there exists an 𝛿 > 0 such that if 

 |𝑥 − 𝑎| < 𝛿, then |(𝑓(𝑥) + 𝑔(𝑥)) − (𝑓(𝑎) + 𝑔(𝑎))| < 𝜖.  

 

 Since 𝑓 is continuous at 𝑎 ∈ 𝑈, we know there exists a 𝛿1 > 0 such that if 

                               |𝑥 − 𝑎| < 𝛿1, then |𝑓(𝑥) − 𝑓(𝑎)| <
𝜖

2
 .  

 

 Since 𝑔 is continuous at 𝑎 ∈ 𝑈, we know there exists a 𝛿2 > 0 such that if 

                                |𝑥 − 𝑎| < 𝛿2, then |𝑔(𝑥) − 𝑔(𝑎)| <
𝜖

2
 . 

 

 Let 𝛿 = min(𝛿1, 𝛿2):  

If |𝑥 − 𝑎| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑎)| <
𝜖

2
 

        and |𝑔(𝑥) − 𝑔(𝑎)| <
𝜖

2
 

 Thus,  
 

|(𝑓(𝑥) + 𝑔(𝑥)) − (𝑓(𝑎) + 𝑔(𝑎))| = |(𝑓(𝑥) − 𝑓(𝑎)) + (𝑔(𝑥) − 𝑔(𝑎))| 
 

                ≤ |𝑓(𝑥) − 𝑓(𝑎)| + |𝑔(𝑥) − 𝑔(𝑎)|   
 

   <
𝜖

2
+
𝜖

2
= 𝜖.   

            and 𝑓 + 𝑔 is continuous at 𝑎 ∈ 𝑈.   

 

 

Theorem:  If 𝑓: 𝐴 → ℝ𝑚 is continuous, 𝐴 ⊆ ℝ𝑛, and 𝐴 is compact, then 

        𝑓(𝐴) ⊆ ℝ𝑚 is compact. 


