Finite, Countable, and Uncountable Sets

Def. Let A and B be 2 sets and f a mapping of Ainto B. If E € A, f(E) is defined
to be the set of elements f(x), for xeE. f(E) is called the image of E under f.

If f(A) = B, we say that f maps A onto B.

f maps A onto B g maps X into Y

A B X Y
f g

-2 A
0 >1 .
2 >3
4 —9 C
6 13

D

Def. If C € B, f~1(C) is the set of all xeA such that f(x)eC. We call f~1(C) the
inverse image of C under f. If yeB, f~1(y) is the set of all xeA such that

fG)=y.

f714) ={-12}
f1{14) ={-12,9}




Ex. let A=RandB =R, and f:R > R by f(x) = x2. Now let

E=[-11]CS A, andC =[1,9] € B. Find f(E), f(4), f~1(C),and f~1(4).

y
f(E) = [0,1] and f(4) = [0, o). Q) = 22
FUO) =l fe[LI = x| 1<x?<9y \ | | | )
={-3<x<-1}Ju{l<x<3)
FT14) = (xl x2 = 4} = (2,2} N |

Def. Let f:A — B. Iffor each yeB, f~1(y) consists of at most 1 element, then f
is said to be a 1-1 mapping of A into B.

Note: this is the same as saying that f is 1-1if f(x;) = f(x;) implies x; = x,.

f

A B

fis 1-1 from A into B.

Def. If there exists a 1-1 mapping of A onto B, then we say that A and B can be
put into 1-1 correspondence or that A~B, i.e., Ais equivalent to B.

gis1l-1from X ontoY, so X~Y.




Ex. Let A=RandB =R, andf:R—> R by f(x) = x2. f(x)isNOTa1-1
mapping of 4 into B since, as we just saw, f ~1(4) = {—2,2}. To be 1-1, the
inverse image of every point in B can have at most 1 point (it can have 0 points).
However, if A = R* U {0} = {x € R| x = 0}, then f:A -> R is1-linto R.

Ex. LetA ={2,4,6,8}, B =1{1,3,5,7,9}, C =1{1,3,5,7}. Let’s define the
following mappings:

ftA->B by f(2)=1, f(4)=3, f(6)=5, f(8) =7
g:A—-C by g(2)=1, g4) =3, g6)=5, g8 =7

Notice that both f and g are 1-1, but f is 1-1 from A into B and g is 1-1 from A
onto C. So we can say that A~C, A is equivalent to C, but A is not equivalent to
B (A is not equivalent to B because we can’t find a 1-1 mapping from A onto B).

Def. Let J, ={1,2,34,..n}; and | ={1,2,3,4...} (i.e., ] isall positive integers).
a. Ais called Finite if A~J,, for some n (the empty set is also considered finite).

b. Ais called Infinite if A is not finite

c. Ais called Countable (or countably infinite) if A~J

d. Ais called Uncountable (or uncountably infinite) if A is neither Finite nor
Countable

e. A iscalled at most countable if A is Finite or Countable
Note: Countable sets are also sometimes called enumerable or denumerable.

These definitions give us a way to talk about the “size” of an infinite set. We say
that 2 infinite sets are equivalent (or have the same “size”) if we can find a 1-1
correspondence from one set onto the other set. This leads to some
counterintuitive results. For example, we can have one infinite set be a proper



subset of the other, yet they have the same “size” (clearly, this can’t happen for a
finite set).

Ex. Let A={1,2,34,...}, and B ={0,1,2,3,4,...}. EventhoughA S BandAis
a proper subset of B we can find a 1-1 correspondence of A onto B:

fiA- B; by f(x)=x-1.
We need to show that f is 1-1 and onto.
If f(p) = f(q)thenp —1=¢q —1, thusp = qand fis 1-1.
Choose any yeB. To show f is “onto” we must be able to find an xeA such that

fx) =y.

But f(x) =x—1=yimpliesthatx =y + 1and (y + 1)€A, so f(x) is also
“onto”.

Thus A is equivalent to B (ie they have the same “size”). They are both countably
infinite.

Ex. Let A =1{1,23,4,..}, and B ={2,4,6,8,...}. Show that A~B.

Let f:A - B; by f(x) = 2x.

We need to show that f is 1-1 and onto.

Notice thatif f(p) = f(q) then 2p = 2q and thusp = q. So fis 1-1.

To show f is “onto” we must show given a yeB, we can find an xeA such that

fl)=y.

f(x) = 2x = yimplies that x = %, which isin A. Thus f is “onto” and A~B.



Ex. A=1{1234,..}, and B ={0,+1,+2,43,...} (i.e., B is all of the integers).
Show A and B are again equivalent:

X
2

Let f:A—-> B; by f(x)=

if x is even
-1
= —(xT) if x is odd
We need to show that f is 1-1 and onto.

If f(p) = f(q) andpiseven, then f(p) = g > 0.

Hence f(q) = %, otherwise f(q) < 0and can'tequal f(p) = g > 0.

Pp_4 —
Thusz—z,andp—q.

Similarly, if pisodd f(p) = — (pT_l) <0,and f(q@) = — (q%) <0.

p-1 q-1

Once again, — (T) = — (T) ,andp = q, so fis1-1.

To show f is “onto” we need to show given any yeB, we can find an xeA such

that f(x) = y.

If y < 0 then f(x)=—(x7_1)=y.

Solving for x we getx = —2y + 1 whichisin4,and f(—2y + 1) = y.

If y>0thenf(x)=(§)=y.

Solving for x we get x = 2y, whichisin 4, and f(2y) = y.
So f is onto and A~B.



Theorem: The set of positive rational numbers, Q%, is countable.

Proof: One can put the set of positive rational numbers, QF, into 1-1

correspndence with the positive integrers, Z*, by creating a “large” table with the
positive integers along the top and side and taking their ratios as the entries of

the table. One then creates a 1-1 mapping with Z* by matching the positive

integers with elements of the table by taking longer and longer diagonals and

“throwing out” duplicate rational numbers (the red numbers):

1 2 3 4 5 6

7

%

3/7
4/7
5/7
6/7
177
8/7

1 1/1 1/2->1/3 1/4->1/5 1/6->1/7
VA v 7 v T/
2 21 212 2/3 2/4 2/5 26 2/7
v 2 L
3 3/1 3/2 3/3 3/4 3/5 3/6
vV v S L
4 4/1 4/2 4/3 4/4 4/5 4/6
A AN i
5 5/1 5/2 5/3 5/4 5/5 5/6
VA v
6 6/1 6/2 6/3 6/4 6/5 6/6
. A
7 7/1 7/2 7/3 7/4 T/5 7/6
8 &/1 82 8/3 8/4 8/5 8/6
1—>%, 2—>§, 3—>%, 4—>§, 5—>§, etc.

Actually, the set of all rational numbers is countable.



A similar argument shows a countable union of countable sets is countable.

Theorem: The set of real numbers between 0 and 1 (inclusive) is uncountable.

Proof: Let’s assume that we can list (listing is the same as creating a 1-1 map with
the positive integers) all of these real numbers and get a contradiction.

x1 =0.a11012013014 ...
X2 = 0.021022023024 -
X3 = 0. 31032033034 ...

X4 = 0.041042043044 -..

where a;; is an integer with 0 < a;; < 9.

But we can always create a real number, x, between 0 and 1 inclusive, which is
not on this list by:

x = 0. ~a11~a22~a33~a44 e e
Where ~a;; means any digit other than a;;.

That contradicts the assumption that we could list all real numbers between 0
and 1. Hence this set is uncountable.



Ex. Show the set of real numbers between 0 and 5 is equivalent to the set of real
numbers between 0 and 1.

let A={xeR| 0<x <1} and B ={xeR| 0 < x < 5}.
Define f: A = B; by f(x) = 5x.

We must show that f is a 1-1 mapping of A onto B.

Toshow fis1-1: f(p) = f(q) implies that 5p = 5q andp = q.

To show f is onto: given a yeB, we can find an xeA such that f(x) = y.

f(x) = 5x =y, solving for x we get: x = % whichisin 4, and f (%) =v.
So f isonto and A~B. \
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Ex. Show that the set of real numbers strictly between 0 and 1 is equivalent to
the set of all positive real numbers.

let A={xeR| 0 <x <1} and B = {xeR| 0 < x}.

Define f:A - B; byf(x) =—

1-x
f(x)is1-1sinceif f(p) = f(q) then 1%} = %q.
p(1-q)=q(1-p)

which impliesp = q.

f(x) is onto since given any positive real number y,

fX)=—=y

X
1-x

x=y(1—-x)=y—xy

x+xy=y
x(1+y)=y

_ Y Yo\
x—1+yEA,andf(1+y)—y
Thus A~B

Def. S=Up-1E,,=E;UE,UE;U..UE,
T=Up-1En=E;UE,UE; U..UE, U ..

means x is a member of S (or T) if and only if x€ E; for some i.



Ex. LetE; = [i,i + 1]; where i is a positive integer
ie. E; ={xeR|i < x <i+ 1, whereiis apositive integer}

Forexample, E5 = {xeR|5 < x < 6}. Find U =1 Em, Um=1 Em.

n1Em=EiUE,UE;U..UE, =[1,n+ 1]

Ue 1 E,=E,UE,UE;U...UE, U..=[1,0)

Def. P=N-,E;=E;NE,NE;N..NE,
Q=n£1E1=ElﬂEzﬂEgﬂﬂEnﬂ

means x is a member of P (or Q) if and only if xeE; foralli = 1,2,3,...n (or o)

Ex. Let E; = [i,0), wherei € Z*. Find N}, E;, N2, E;.

P EE=ENE;NE;N..NE, =[1,0)N[2,00)N--N[n,0) = [n,o)

N2, Ei=E;NE,NE;N..NE,N..=0 (theempty set).

1
Ex. LetF; =[O, 7] ; 1 a positive integer, find n}ﬁl F;, N2, F.

NI F=FnEnFn..nF=[01n[0i]n|os]n..nlo=

=[()1

;E-

N2, F,=FLNF,NF;N..NnFN .= {0}

10



