Limits at infinity occur when x (or the independent variable) becomes very large in magnitude. These limits determine the **end behavior** of a function.

Informal definition: \lim $x\rightarrow\infty$ $\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{L}$ means as \boldsymbol{x} goes toward ∞ the value of $f(x)$ goes toward L.

Similarly, \lim →−∞ $\bm{f}(\bm{x}) = \bm{L}$ means as x goes toward $-\infty$ the value of $f(x)$ goes toward L .

Def. If lim $x\rightarrow\infty$ $f(x) = L$ or lim $x \rightarrow -\infty$ $f(x) = L$ the line $y = L$ is called a **horizontal asymptote** for the graph of the function $y = f(x)$.

Ex. For any positive integer $m, \; y = \frac{1}{x^m}$ has a horizontal asymptote at $y = 0$ since as x goes to either ∞ or $-\infty$, $\frac{1}{x^m}$ goes toward 0 (i.e. $\lim\limits_{x\to\infty}$ $\frac{1}{x^m} = 0$ and lim $x \rightarrow -\infty$ $\frac{1}{x^m} = 0$).

If m is any positive real number then \lim $x\rightarrow\infty$ $\frac{1}{x^m} = 0.$ $\lim_{x \to -\infty}$ $\frac{1}{x^{m}}$ may or may not exist. For example, lim $x \rightarrow -\infty$ 1 \mathcal{X} 1 2 = lim $x \rightarrow -\infty$ 1 $\frac{1}{\sqrt{x}}$ doesn't exist since $\frac{1}{\sqrt{x}}$ is not defined for $x < 0$.

- Ex. Evaluate the following limits:
	- a. lim $x \rightarrow -\infty$ $(4-\frac{3}{\pi})$ $\frac{3}{x^2}$ b. lim $x\rightarrow\infty$ $(3 + \frac{cos x}{\sqrt{x}})$ $\frac{\partial s}{\partial x}$
	- a. By our limits laws:

$$
\lim_{x \to -\infty} (4 - \frac{3}{x^2}) = \lim_{x \to -\infty} 4 - \lim_{x \to -\infty} \frac{3}{x^2}
$$

=
$$
\lim_{x \to -\infty} 4 - (3) (\lim_{x \to -\infty} \frac{1}{x^2}) = 4 - 3(0) = 4.
$$

b. Notice that $-1 \leq \cos x \leq 1$ for all real numbers *x* so −1 \sqrt{x} $\leq \frac{cos x}{\sqrt{x}}$ \sqrt{x} $\leq \frac{1}{\sqrt{2}}$ \sqrt{x} ; for $x > 0$.

By the squeeze theorem since lim $x\rightarrow\infty$ −1 $\frac{-1}{\sqrt{x}} = 0$ and $\lim_{x \to \infty}$ $x\rightarrow\infty$ 1 $\frac{1}{\sqrt{x}}=0,$ \implies lim $x\rightarrow\infty$ $cos x$ $\frac{\partial}{\partial x} = 0.$

Thus lim $x\rightarrow\infty$ $(3 + \frac{cos x}{\sqrt{x}})$ $\frac{\partial^2 x}{\partial x^2}$ = $\lim_{x\to\infty}$ $x\rightarrow\infty$ 3 + lim $x\rightarrow\infty$ $cos x$ $\frac{63x}{\sqrt{x}} = 3 + 0 = 3.$

Infinite Limits at infinity

Informal definition: If $f(x)$ becomes arbitrarily large as x becomes arbitrarily large, then we write $\,\mathop{\mathrm{lim}}\nolimits\,$ $x\rightarrow\infty$ $f(x) = \infty$. lim $x\rightarrow\infty$ $f(x) = -\infty$, lim $x \rightarrow -\infty$ $f(x) = \infty$, and lim $x \rightarrow -\infty$ $f(x) = -\infty$ are defined analogously.

- Ex. lim $x\rightarrow\infty$ $x^3 = \infty$, lim $x \rightarrow -\infty$ $x^3 = -\infty$ lim $x\rightarrow\infty$ $x^2 = \infty$, lim $x \rightarrow -\infty$ $x^2 = \infty$.
- In fact: $x\rightarrow\infty$ $x^n = \infty$, lim $x \rightarrow -\infty$ $x^n = -\infty$, if n is a positive odd number lim $x\rightarrow\infty$ $x^n = \infty$, lim $x \rightarrow -\infty$ $x^n = \infty$, if n is a positive even number.

The end behavior of a polynomial is determined by whether the degree of the highest power is odd or even AND the sign of the coefficient of that term.

$$
p(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0
$$

= $x^n (b_n + \frac{b_{n-1}}{x} + \dots + \frac{b_1}{x^{n-1}} + \frac{b_0}{x^n})$

As x goes to $\pm\infty$ all of the terms in the parentheses go to 0 except the first one. So as x goes to $~\pm \infty$, $p(x)$ has end behavior of $b_n x^n.$

Ex. Find
$$
\lim_{x \to \infty}
$$
 $(-4x^{15} + 100x^{14} - 3x^7 + 3)$ and
\n $\lim_{x \to \infty}$ $(-4x^{15} + 100x^{14} - 3x^7 + 3)$.

$$
\lim_{x \to \infty} (-4x^{15} + 100x^{14} - 3x^7 + 3) = \lim_{x \to \infty} (-4x^{15}) = -\infty
$$

since $\lim_{x \to \infty} x^{15} = \infty$.

$$
\lim_{x \to -\infty} (-4x^{15} + 100x^{14} - 3x^7 + 3) = \lim_{x \to -\infty} (-4x^{15}) = \infty
$$

since $\lim_{x \to -\infty} x^{15} = -\infty$.

End Behavior of Rational Functions and Algebraic Functions To determine the end behavior of a rational function $\frac{p(x)}{q(x)}$, divide the numerator and the denominator by the highest power in the denominator.

Ex. Determine the end behavior of:

a.
$$
\frac{3x-1}{2x^3+x}
$$

b.
$$
\frac{-2x^4+x^2+3}{-2x^3+x-1}
$$

C.
$$
\frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1}
$$

a.
$$
\frac{3x-1}{2x^3+x} = \frac{x^3(\frac{3}{x^2}-\frac{1}{x^3})}{x^3(2+\frac{1}{x^2})} = \frac{(\frac{3}{x^2}-\frac{1}{x^3})}{(2+\frac{1}{x^2})};
$$
 so

$$
\lim_{x \to \infty} \frac{3x - 1}{2x^3 + x} = \lim_{x \to \infty} \frac{\left(\frac{3}{x^2} - \frac{1}{x^3}\right)}{\left(2 + \frac{1}{x^2}\right)} = \frac{0 - 0}{2 + 0} = \frac{0}{2} = 0
$$

$$
\lim_{x \to -\infty} \frac{3x-1}{2x^3 + x} = \lim_{x \to -\infty} \frac{\left(\frac{3}{x^2} - \frac{1}{x^3}\right)}{\left(2 + \frac{1}{x^2}\right)} = \frac{0-0}{2+0} = \frac{0}{2} = 0.
$$

So $y = 0$ is a horizontal asymptote for this function.

b.
$$
\frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \frac{x^3(-2x + \frac{1}{x} + \frac{3}{x^3})}{x^3(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})};
$$
 so

$$
\lim_{x \to \infty} \frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \lim_{x \to \infty} \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \lim_{x \to \infty} \frac{-2x}{-2} = \lim_{x \to \infty} x = \infty.
$$

$$
\lim_{x \to -\infty} \frac{-2x^4 + x^2 + 3}{-2x^3 + x - 1} = \lim_{x \to -\infty} \frac{(-2x + \frac{1}{x} + \frac{3}{x^3})}{(-2 + \frac{1}{x^2} - \frac{1}{x^3})} = \lim_{x \to -\infty} \frac{-2x}{-2} = \lim_{x \to -\infty} x = -\infty.
$$

So no horizontal asymptotes for this function.

c.
$$
\frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1} = \frac{x^4(10 + \frac{3}{x^3} - \frac{2}{x^4})}{x^4(-2 + \frac{1}{x^2} - \frac{1}{x^4})} = \frac{(10 + \frac{3}{x^3} - \frac{2}{x^4})}{(-2 + \frac{1}{x^2} - \frac{1}{x^4})};
$$
 so

$$
\lim_{x \to \infty} \frac{10x^4 + 3x - 2}{-2x^4 + x^2 - 1} = \lim_{x \to \infty} \frac{(10 + \frac{3}{x^3} - \frac{2}{x^4})}{(-2 + \frac{1}{x^2} - \frac{1}{x^4})} = \frac{10}{-2} = -5.
$$

So $y = -5$ is a horizontal asymptote for this function.

Summary of End Behavior and Asymptotes of Rational Functions:

If $f(x) = \frac{p(x)}{q(x)}$ $\frac{p(x)}{q(x)}$, where $p(x)$ is a polynomial of degree r and $q(x)$ is a polynomial of degree s where:

$$
p(x) = c_r x^r + c_{r-1} x^{r-1} + \dots + c_1 x + c_0; \qquad c_r \neq 0
$$

$$
q(x) = d_s x^s + d_{s-1} x^{s-1} + \dots + d_1 x + d_0; \qquad d_s \neq 0.
$$

- 1. If the degree of the numerator is less than the degree of the denominator, $r < s$, then \lim →±∞ $f(x) = 0$ and $y = 0$ is a horizontal asymptote of $f(x)$.
- 2. If the degree of the numerator equals the degree of the denominator, $r = s$, then \lim →±∞ $f(x) = \frac{c_r}{d}$ $d_{\mathcal{S}}$ and $y = \frac{c_r}{d}$ $d_{\mathcal{S}}$ is a horizontal asymptote of $f(x)$.
- 3. If the degree of the numerator is greater than the degree of the denominator, $r > s$, then $\lim_{ }$ →±∞ $f(x) = \infty$ or $-\infty$, and $f(x)$ has no horizontal asymptote.
- 4. Assuming $f(x)$ is in reduced form, vertical asymptotes occur at the zeros of $q(x)$.

End Behavior for Algebraic Functions

Ex. Evaluate:
$$
\lim_{x \to \pm \infty} \frac{6x+1}{\sqrt{4x^2+3x+5}}
$$

The highest power in the denominator is $\sqrt{x^2} = x$ when x is positive:

$$
\lim_{x \to \infty} \frac{6x+1}{\sqrt{4x^2+3x+5}} = \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2(4+\frac{3}{x}+\frac{5}{x^2})}}
$$
\n
$$
= \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2}\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}
$$
\n
$$
= \lim_{x \to \infty} \frac{x(6+\frac{1}{x})}{x\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}
$$
\n
$$
= \lim_{x \to \infty} \frac{6+\frac{1}{x}}{\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}
$$
\n
$$
= \frac{6}{\sqrt{4}} = 3.
$$

When x is negative $\sqrt{x^2} = -x$:

$$
\lim_{x \to -\infty} \frac{6x+1}{\sqrt{4x^2+3x+5}} = \lim_{x \to -\infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2(4+\frac{3}{x}+\frac{5}{x^2})}}
$$

$$
= \lim_{x \to -\infty} \frac{x(6+\frac{1}{x})}{\sqrt{x^2}\sqrt{4+\frac{3}{x}+\frac{5}{x^2}}}
$$

$$
= \lim_{x \to -\infty} \frac{x(6 + \frac{1}{x})}{-x\sqrt{4 + \frac{3}{x} + \frac{5}{x^2}}}; \quad \sqrt{x^2} = -x \text{ since } x < 0.
$$

$$
= \lim_{x \to -\infty} -\frac{6 + \frac{1}{x}}{\sqrt{4 + \frac{3}{x} + \frac{5}{x^2}}}
$$

$$
= -\frac{6}{\sqrt{4}} = -3.
$$

Ex. Determine the end behavior of $f(x) =$ $\sqrt{x^6+2}$ $\frac{x^2+2}{3x^3+2x}$.

As with rational functions we want to divide the numerator and the denominator by the "highest power" in the denominator. However, since there is a square root in the numerator we have to be careful. The highest power in the numerator is actually $\sqrt{x^6} = x^3$ if $x > 0$ and $\sqrt{x^6} = -x^3$ if $x < 0$. Either way, the "highest power" in the numerator is 3, the same as the denominator.

For $x > 0$, $\sqrt{x^6} = x^3$,

$$
\lim_{x \to \infty} \frac{\sqrt{x^6 + 2}}{3x^3 + 2x} = \lim_{x \to \infty} \frac{\sqrt{x^6 (1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})} = \lim_{x \to \infty} \frac{\sqrt{x^6} \sqrt{(1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})}
$$

$$
= \lim_{x \to \infty} \frac{x^3 \sqrt{(1 + \frac{2}{x^6})}}{x^3 (3 + \frac{1}{x^2})} = \lim_{x \to \infty} \frac{\sqrt{(1 + \frac{2}{x^6})}}{(3 + \frac{1}{x^2})} = \frac{1}{3}
$$

For $x < 0$, $\sqrt{x^6} = -x^3$, lim $x \rightarrow -\infty$ $\sqrt{x^6+2}$ $\frac{\sqrt{x^3+2}}{3x^3+2x} = \lim_{x \to -\infty}$ $x \rightarrow -\infty$ $\int x^6(1+\frac{2}{x^6})$ $\frac{2}{x^6}$ $x^3(3+\frac{1}{\sqrt{2}})$ $\frac{1}{x^2}$ = lim $x \rightarrow -\infty$ $\sqrt{x^6}\left(1+\frac{2}{x^6}\right)$ $\frac{2}{x^6}$ $x^3(3+\frac{1}{\sqrt{2}})$ $\frac{1}{x^2}$ $=$ lim $x \rightarrow -\infty$ $-x^3 \left(1 + \frac{2}{ct}\right)$ $\frac{2}{x^6}$ $x^3(3+\frac{1}{\sqrt{2}})$ $\frac{1}{x^2}$ = lim $x \rightarrow -\infty$ $-\int (1+\frac{2}{\mu})$ $\frac{2}{x^6}$ $\frac{1}{(3+\frac{1}{\sqrt{2}})}$ $\frac{1}{x^2}$ $=\frac{-1}{2}$ $\frac{1}{3}$.

So $y = \frac{1}{2}$ $\frac{1}{3}$ is a horizontal asymptote and $y=-\frac{1}{3}$ $\frac{1}{3}$ is a horizontal asymptote.

Note: If the highest power under the square root was a multiple of 4, like x^8 , we wouldn't have had to worry about the sign of the radical because for any value of $x, \sqrt{x^8} = x^4.$

End Behavior of $sinx$ and $cosx$

 and oscillate so lim →±∞ $sinx$ and lim →±∞ $cos x$ do not exist.

.