Def. A function F is an **antiderivative** of f on an interval I provided $F'(x) = f(x)$, for all x in I.

Antiderivatives will become very important when we talk about integration.

If $F(x)$ and $G(x)$ are both antiderivatives of $f(x)$, i.e. $F'(x) = f(x)$ and $G'(x) = f(x)$, Then $G'(x) = F'(x)$. As we saw from the Mean Value Theorem, this means that $G(x) = F(x) + C$, where C is a constant.

So an antiderivative of a function is not unique, but any antiderivative of a function f differs from any other antiderivative of f by a constant.

So far we have developed a number of formulas for derivatives of functions. To find an antiderivative of a function $f(x)$, we need to go "backwards". That is we need to find a function $F(x)$ such that $F'(x) = f(x)$.

Ex. Find all antiderivatives of $f(x) = 1$.

This one isn't so bad. We have to find a function $F(x)$ such that $F'(x) = 1$. If we take $F(x) = x$, that will work. So $F(x) = x$ is an antiderivative of $f(x) = 1$. If we want all antiderivatives of $f(x) = 1$, we take $F(x) = x + C$. Ex. Find all antiderivatives of $f(x) = x$.

So we need a function $F(x)$ such that $F'(x) = x$. If we take $F(x) = \frac{1}{2}$ $\frac{1}{2}x^2$ we will have an antiderivative of $f(x) = x$. To get all antiderivatives we take $F(x) = \frac{1}{2}$ $\frac{1}{2}x^2 + C$.

Ex. Find all antiderivatives of $h(x) = x^n$, where n is a positive integer.

We know when we take a derivative of x^n , n a positive integer, we get \boldsymbol{d} $\frac{a}{dx}(x^n) = nx^{n-1}.$

So if we want to go "backwards" let's try taking as an antiderivative of χ^n , $H(x) = \frac{1}{x+1}$ $\frac{1}{n+1} \chi^{n+1}$.

Notice that if n is a positive integer (or even a positive rational number) that $H'(x) = x^n$.

So all of the antiderivatives of $h(x) = x^n$, n a positive integer, are given by $H(x) = \frac{1}{x+1}$ $\frac{1}{n+1}x^{n+1} + C.$

In particular, when $n=3$, all of the antiderivatives of $g(x) = x^3$ are given by $G(x) = \frac{1}{4}$ $\frac{1}{4}x^4 + C$.

When $n=2$, all of the antiderivatives of $f(x)=x^2$ are given by $F(x) = \frac{1}{2}$ $\frac{1}{3}x^3 + C$.

Notice that if $F(x)$ is an antiderivative of $f(x)$, then $kF(x)$ is an antiderivative of $kf(x)$, where k is a constant.

Ex. Find all of the antiderivatives of
$$
f(x) = -9x^5
$$
 and $g(x) = \frac{x^8}{3}$.

We know that an antiderivative of x^5 is given by $\frac{1}{6}x^6$ so an antiderivative of $-9x^5$ is given by $-9\left(\frac{1}{6}\right)$ $\left(\frac{1}{6}x^6\right) = -\frac{3}{2}$ $\frac{3}{2}x^6$. Thus all of the antiderivatives of $f(x) = -9x^5$ are given by $F(x) = -\frac{3}{3}$ $\frac{3}{2}x^6 + C$.

We know that an antiderivative of x^8 is given by $\frac{1}{9}x^9$ so an antiderivative of x^8 $rac{c^8}{3} = \frac{1}{3}$ $\frac{1}{3} \chi^8$ is given by $\frac{1}{3} \left(\frac{1}{9} \right)$ $\left(\frac{1}{9}x^9\right) = \frac{1}{27}$ $\frac{1}{27}\chi^9$. Thus all of the antiderivatives of $g(x) = \frac{x^8}{2}$ $\frac{x^8}{3}$ are given by $G(x) = \frac{1}{27}$ $\frac{1}{27}x^9 + C.$

The symbol we use for the antiderivatives of a function $f(x)$ is what's called the **indefinite integral of** $f(x)$ **, written** $\int f(x)dx$.

So we would say $\int -9x^5 dx = -\frac{3}{2}$ $\frac{3}{2}x^6 + C$ Power Rule for Indefinite Integrals

 $\int x^n dx = \frac{1}{n+1}$ $\frac{1}{n+1}x^{n+1} + C$ where $n \neq -1$ is a real number and C is any constant.

This follows from the fact that
$$
\frac{d}{dx} \left(\frac{1}{n+1} x^{n+1} + C \right) = \frac{d}{dx} \left(\frac{1}{n+1} x^{n+1} \right) + \frac{d}{dx} \left(C \right)
$$

$$
= x^n.
$$

Note: I'm "cheating" a bit here since we only know the derivative power rule \boldsymbol{d} $\frac{a}{dx}(x^n) = nx^{n-1}$ when n is a rational number. However, this rule as well as the Power Rule for indefinite integrals is true for n a real number.

Just as in the case with taking derivatives, the indefinite integral of the sum or difference of 2 functions is the sum or difference of the indefinite integrals. The indefinite integral of a constant times a function is that constant times the indefinite integral of the function.

Constant Multiple and Sum/Difference Rules

 $\int cf(x) dx = c \int f(x) dx$ $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$. Ex. Find the following indefinite integrals (Try to first write the function you are integrating, called the integrand, as a sum of terms that are just constants times powers of the variable)

a.
$$
\int (2x^3 - 4 + \frac{6}{\sqrt{x}}) dx
$$

b.
$$
\int \left(\frac{2x^{11} - 3x^{-5}}{x^5}\right) dx
$$

c.
$$
\int (y^2 + 3)(y^3 - 1) dy
$$

a.
$$
\int (2x^3 - 4 + \frac{6}{\sqrt{x}}) dx = \int (2x^3 - 4 + 6x^{-\frac{1}{2}}) dx
$$

\n
$$
= 2 \int x^3 dx - 4 \int 1 dx + 6 \int x^{-\frac{1}{2}} dx
$$

\n
$$
= 2 (\frac{1}{4}x^4) - 4x + 6 (\frac{1}{\frac{1}{2}}x^{\frac{1}{2}}) + C
$$

\n
$$
= \frac{1}{2}x^4 - 4x + 6 (2x^{\frac{1}{2}}) + C
$$

\n
$$
= \frac{1}{2}x^4 - 4x + 12 (x^{\frac{1}{2}}) + C
$$

b.
$$
\int \left(\frac{2x^{11}-3x^{-5}}{x^5}\right) dx = \int \left(2\frac{x^{11}}{x^5} - 3\frac{x^{-5}}{x^5}\right) dx
$$

\n
$$
= \int (2x^6 - 3x^{-10}) dx
$$

\n
$$
= 2 \int x^6 dx - 3 \int x^{-10} dx
$$

\n
$$
= 2 \left(\frac{1}{7}x^7\right) - 3 \left(\frac{1}{9}\right)x^{-9} + C
$$

\n
$$
= \frac{2}{7}x^7 + \frac{1}{3}x^{-9} + C
$$

c.
$$
\begin{aligned} \int (y^2 + 3)(y^3 - 1) dy &= \int (y^5 - y^2 + 3y^3 - 3) dy \\ &= \int y^5 dy - \int y^2 dy + 3 \int y^3 dy - 3 \int 1 dy \\ &= \frac{1}{6} y^6 - \frac{1}{3} y^3 + 3 \left(\frac{1}{4} y^4\right) - 3y + C \\ &= \frac{1}{6} y^6 + \frac{3}{4} y^4 - \frac{1}{3} y^3 - 3y + C. \end{aligned}
$$

Indefinite Integrals of Trig Functions:

A Table of derivatives can help us develop a table of antiderivatives

1.
$$
\frac{d}{dx}(\sin ax) = a\cos ax
$$
 $\int \cos ax \, dx = \frac{1}{a}\sin(ax) + C$
\n2. $\frac{d}{dx}(\cos ax) = -a\sin ax$ $\int \sin ax \, dx = -\frac{1}{a}\cos(ax) + C$
\n3. $\frac{d}{dx}(\tan ax) = a\sec^2 ax$ $\int \sec^2 ax \, dx = \frac{1}{a}\tan(ax) + C$
\n4. $\frac{d}{dx}(\cot ax) = -a\csc^2 ax$ $\int \csc^2 ax \, dx = -\frac{1}{a}\cot(ax) + C$
\n5. $\frac{d}{dx}(\sec ax) = a(\sec ax)(\tan ax)$ $\int (\sec ax)(\tan ax) \, dx = \frac{1}{a}\sec(ax) + C$
\n6. $\frac{d}{dx}(\csc ax) = -a(\csc ax)(\cot ax)$ $\int (\csc ax)(\cot ax) \, dx = -\frac{1}{a}\csc(ax) + C$

Ex. Evaluate the following indefinite integrals

a.
$$
\int \cos(6x) dx
$$

b.
$$
\int \csc^2(3x) dx
$$

c.
$$
\int (2\sin(4x) + 6\sec^2(\frac{x}{3})) dx
$$

a.
$$
\int \cos(6x) dx = \frac{1}{6} \sin(6x) + C
$$

b.
$$
\int csc^2(3x) dx = -\frac{1}{3}cot(3x) + C
$$

c.
$$
\int \left(2\sin(4x) + 6\sec^2\left(\frac{x}{3}\right)\right) dx
$$

=
$$
2\int \sin(4x) dx + 6\int \sec^2\left(\frac{x}{3}\right) dx
$$

=
$$
2\left(-\frac{1}{4}\cos(4x)\right) + 6\left(3\tan\left(\frac{x}{3}\right)\right) + C
$$

=
$$
-\frac{1}{2}\cos(4x) + 18\tan\left(\frac{x}{3}\right) + C.
$$

Ex. Evaluate $\int [3 \sec(x) \tan(x) - 2 \csc(5x) \cot(5x)] dx$

$$
\int [3 \sec(x) \tan(x) - 2 \csc(5x) \cot(5x)] dx
$$

= 3 \int \sec(x) \tan(x) dx - 2 \int \csc(5x) \cot(5x) dx
= 3 \sec(x) + 2(\frac{1}{5}) \csc(5x) + C
= 3 \sec(x) + \frac{2}{5} \csc(5x) + C.

Differential Equations

A **Differential Equation** is an equation that involves the derivative (or derivatives) of a function as well as possibly the function itself. A solution to a differential equation is a function that satisfies the equation. We have already solved some elementary differential equations when we found antiderivatives.

Ex. Solve the following differential equation

$$
f'(x) = 3x^2 + 7.
$$

So in this case we are looking for all the antiderivatives of $3x^2+7$. In other words we want $\int (3x^2 + 7) dx = x^3 + 7x + C$.

So any function of the form $f(x) = x^3 + 7x + C$ is a solution to this differential equation.

In many cases of differential equations, they are accompanied by an **Initial Condition**. An initial condition is a condition on the unknown function f , that will allow us to calculate what the constant term $\mathcal C$ is.

Ex. Solve the following differential equation

$$
f'(x) = 3x^2 + 7
$$

with the initial condition that $f(1) = 4$.

In the previous example we found the **general solution** to this differential equation: $f(x) = x^3 + 7x + C$.

Now we know that $f(1) = 4$, so we can't use just any value of the constant C.

$$
4 = f(1) = 1^3 + 7(1) + C = 8 + C \implies C = -4.
$$

So $C = -4$ and the solution to this **Initial Value Problem** (i.e. a differential equation together with an initial condition(s)) is

$$
f(x) = x^3 + 7x - 4.
$$

Ex. Solve the differential equation: $f'(x) = 9\sin(3x) + 8x^3$ with $f(0) =$ 5.

$$
f(x) = \int (9\sin(3x) + 8x^3) dx
$$

= 9 \int \sin(3x) dx + 8 \int x^3 dx
= 9(-\frac{1}{3}\cos(3x)) + 8(\frac{1}{4}x^4) + C = -3\cos(3x) + 2x^4 + C.

$$
f(0) = 5; \quad \text{so}
$$

$$
5 = f(0) = -3\cos(0) + 2(0)^4 + C
$$

$$
5 = -3 + C \quad \Rightarrow \quad C = 8.
$$

$$
f(x) = -3\cos(3x) + 2x^4 + 8.
$$

Linear Motion

Initial Value Problems for Velocity and Position.

Suppose an object moves in a line with velocity $v(t)$, $t \geq 0$. Then its position can be found by solving the initial value problem

$$
s'(t) = v(t), \ \ s(0) = s_0, \text{ where } s_0 \text{ is known.}
$$

If the acceleration of the object $a(t)$ is given, then the velocity can be found by solving the initial value problem

$$
v'(t) = a(t), v(0) = v_0, \text{ where } v_0 \text{ is known.}
$$

Ex. Runner A begins at point $s(0) = 0$ f t with a velocity of $v(t) = (2t + 1) ft/sec$. Runner B begins with a head start at the point $S(0) = 12 ft$ with a velocity of $V(t) = 5 ft/sec$. Find the positions of the runners for $t \geq 0$ and determine when runner A overtakes runner B.

For runner A:
$$
s'(t) = v(t) = 2t + 1
$$
, $s(0) = 0$.
\nSo $s(t) = \int (2t + 1)dt = t^2 + t + C$
\n $0 = s(0) = 0^2 + 0 + C$, thus $C = 0$.
\nSo $s(t) = t^2 + t$.

For runner B:
$$
S(t) = V(t) = 5
$$
, $S(0) = 12$
\n $S(t) = \int 5dt = 5t + C$
\n $12 = S(0) = 5(0) + C$, thus $C = 12$
\nSo $S(t) = 5t + 12$.

To find when Runner A overtakes Runner B solve $t^2 + t = 5t + 12.$

$$
t2 - 4t - 12 = 0
$$

(t - 6)(t + 2) = 0

$$
t = 6, -2 \text{ since } t \ge 0, \ t = 6 \text{sec.}
$$

Ex. Neglecting air resistance the Earth's gravitational pull accelerates objects down toward the Earth at a constant acceleration of $\,a(t) = -9.8m/s^2.\,$ A rock is thrown vertically upward at $t = 0$ with a velocity of $30m/s$ from the edge of a cliff that is $100m$ above a river.

- a. Find the velocity $v(t)$, $t \geq 0$.
- b. Find the position $s(t)$, $t \geq 0$.
- c. Find the maximum height of the rock.
- d. At what speed does the rock hit the river?

a.
$$
v'(t) = a(t) = -9.8
$$
, $v(0) = 30$
\n $v(t) = \int -9.8dt = -9.8t + C$
\n $30 = v(0) = -9.8(0) + C$, $C = 30$.
\n $v(t) = -9.8t + 30$.

b.
$$
s'(t) = v(t) = -9.8t + 30
$$
, $s(0) = 100$
\n $s(t) = \int (-9.8t + 30)dt = -4.9t^2 + 30t + C$
\n $100 = s(0) = -4.9(0^2) + 30(0) + C$, $C = 100$.
\n $s(t) = -4.9t^2 + 30t + 100$.

- c. Maximum height occurs when the velocity is 0. $0 = -9.8t + 30$ or $t = \frac{30}{30}$ $\frac{30}{9.8} \approx 3.06s.$ $s(3.06) = -4.9(3.06^2) + 30(3.06) + 100 \approx 145.92m$.
- d. We have to solve for the time when the rock hits the water. $-4.9t^2 + 30t + 100 = 0$ (Use the quadratic formula)

 $t=$ $-30\pm\sqrt{30^2-4(-4.9)(100)}$ 2(−4.9) $\approx 8.52s$ (the other solution is negative)

 $v(8.52) = -9.8(8.52) + 30 \approx -53.50$ m/s (– means downward) Speed= $|velocity| = 53.30m/s$.